B-L-SM: B-L-3.nb

File B-L-3.nb, 60.6 KB (added by WeiLiu, 2 weeks ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 11.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[       158,          7]
13NotebookDataLength[     61893,       1539]
14NotebookOptionsPosition[     51476,       1400]
15NotebookOutlinePosition[     51836,       1416]
16CellTagsIndexPosition[     51793,       1413]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21
22Cell[CellGroupData[{
23Cell["Import Model", "Section",
24 CellChangeTimes->{{3.689081667595069*^9,
25  3.689081669968788*^9}},ExpressionUUID->"845d24d6-6818-4012-b448-\
26940e823be5cc"],
27
28Cell[CellGroupData[{
29
30Cell[BoxData[{
31 RowBox[{"$FeynRulesPath", " ", "=",
32  RowBox[{
33  "SetDirectory", "[", "\"\<~/Downloads/feynrules-current\>\"",
34   "]"}]}], "\[IndentingNewLine]",
35 RowBox[{"<<", "FeynRules`"}]}], "Input",
36 CellChangeTimes->{{3.6980642251719913`*^9, 3.6980642281701612`*^9}, {
37  3.7525860370775223`*^9,
38  3.7525860856322203`*^9}},ExpressionUUID->"de8e714b-86fc-4414-9085-\
392a625ed0e69c"],
40
41Cell[BoxData["\<\"/Users/liuwei/Downloads/feynrules-current\"\>"], "Output",
42 CellChangeTimes->{{3.689081327035828*^9, 3.689081333701394*^9}, {
43   3.6890815736773043`*^9, 3.6890816330541363`*^9}, {3.6890896778793087`*^9,
44   3.689089698917212*^9}, 3.689090676215493*^9, 3.689090711121687*^9,
45   3.689235155290155*^9, 3.689237252646986*^9, 3.689238058395878*^9,
46   3.6892411845206747`*^9, {3.6981409751974297`*^9, 3.6981409878320847`*^9},
47   3.739516005039154*^9, 3.739522088112252*^9, 3.7395221384947042`*^9, {
48   3.7395310414530687`*^9, 3.739531050796596*^9}, 3.75258599364561*^9, {
49   3.752586056113909*^9, 3.752586086352968*^9}, 3.752586163490781*^9,
50   3.752586248921873*^9, 3.752586309927162*^9,
51   3.752586542406622*^9},ExpressionUUID->"794c9b66-4f18-4e24-85d4-\
5217ee25231636"],
53
54Cell[CellGroupData[{
55
56Cell[BoxData["\<\" - FeynRules - \"\>"], "Print",
57 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
58  3.7525862489301558`*^9, 3.752586309938526*^9,
59  3.752586542417001*^9},ExpressionUUID->"bdf50bb7-6a35-4c1e-994e-\
60c48aa4ed0302"],
61
62Cell[BoxData[
63 InterpretationBox[
64  RowBox[{"\<\"Version: \"\>", "\[InvisibleSpace]", "\<\"2.3.32\"\>",
65   "\[InvisibleSpace]",
66   RowBox[{"\<\" (\"\>", " ", "\<\"12 March 2018\"\>"}],
67   "\[InvisibleSpace]", "\<\").\"\>"}],
68  SequenceForm["Version: ", "2.3.32", " (" "12 March 2018", ")."],
69  Editable->False]], "Print",
70 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
71  3.7525862489301558`*^9, 3.752586309938526*^9,
72  3.752586542424552*^9},ExpressionUUID->"2d4986cf-b87f-47bf-9b97-\
730252241b6549"],
74
75Cell[BoxData["\<\"Authors: A. Alloul, N. Christensen, C. Degrande, C. Duhr, \
76B. Fuks\"\>"], "Print",
77 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
78  3.7525862489301558`*^9, 3.752586309938526*^9,
79  3.752586542434349*^9},ExpressionUUID->"c036620c-7488-47f5-8b10-\
803c36a24fb920"],
81
82Cell[BoxData["\<\" \"\>"], "Print",
83 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
84  3.7525862489301558`*^9, 3.752586309938526*^9,
85  3.7525865424437923`*^9},ExpressionUUID->"9d75119e-ce86-4013-95d6-\
86a681153e6a4d"],
87
88Cell[BoxData["\<\"Please cite:\"\>"], "Print",
89 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
90  3.7525862489301558`*^9, 3.752586309938526*^9,
91  3.752586542453252*^9},ExpressionUUID->"06a289e5-fdea-4455-a21a-\
927caa4ccc547b"],
93
94Cell[BoxData["\<\"    - Comput.Phys.Commun.185:2250-2300,2014 \
95(arXiv:1310.1921);\"\>"], "Print",
96 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
97  3.7525862489301558`*^9, 3.752586309938526*^9,
98  3.7525865424628067`*^9},ExpressionUUID->"fd744190-0fff-4211-a9af-\
99ac86a9e6873b"],
100
101Cell[BoxData["\<\"    - Comput.Phys.Commun.180:1614-1641,2009 \
102(arXiv:0806.4194).\"\>"], "Print",
103 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
104  3.7525862489301558`*^9, 3.752586309938526*^9,
105  3.752586542472608*^9},ExpressionUUID->"13e5d5e9-91e2-4e62-8b17-\
106a3490d679557"],
107
108Cell[BoxData["\<\" \"\>"], "Print",
109 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
110  3.7525862489301558`*^9, 3.752586309938526*^9,
111  3.75258654248205*^9},ExpressionUUID->"0dfd5699-27b5-44fa-9d94-aef593b0edae"],
112
113Cell[BoxData["\<\"http://feynrules.phys.ucl.ac.be\"\>"], "Print",
114 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
115  3.7525862489301558`*^9, 3.752586309938526*^9,
116  3.752586542491724*^9},ExpressionUUID->"09c71fbf-ff28-4104-9a98-\
117ada1697559a0"],
118
119Cell[BoxData["\<\" \"\>"], "Print",
120 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
121  3.7525862489301558`*^9, 3.752586309938526*^9,
122  3.752586542501059*^9},ExpressionUUID->"bb780f03-5fdb-4642-a5ac-\
1233b2eb2cac908"],
124
125Cell[BoxData["\<\"The FeynRules palette can be opened using the command \
126FRPalette[].\"\>"], "Print",
127 CellChangeTimes->{3.752586086362726*^9, 3.752586163499283*^9,
128  3.7525862489301558`*^9, 3.752586309938526*^9,
129  3.752586542510626*^9},ExpressionUUID->"5e346848-af13-4d5d-874e-\
130aa86e0071a20"]
131}, Open  ]]
132}, Open  ]],
133
134Cell[BoxData[
135 RowBox[{
136  RowBox[{"SetDirectory", "[",
137   RowBox[{"$FeynRulesPath", "<>", "\"\</Models\>\""}], "]"}], ";"}]], "Input",\
138
139 CellChangeTimes->{{3.689081341606921*^9, 3.689081346540422*^9},
140   3.68908165017024*^9, {3.739516023878146*^9, 3.739516027718034*^9}, {
141   3.752586112043388*^9,
142   3.752586112986586*^9}},ExpressionUUID->"9857198b-af32-4692-9afe-\
1432f056b604eed"],
144
145Cell[CellGroupData[{
146
147Cell[BoxData[
148 RowBox[{"LoadModel", "[", "\"\<B-L_N_3.fr\>\"", "]"}]], "Input",
149 CellChangeTimes->{{3.6890813547730722`*^9, 3.689081354900158*^9}, {
150   3.6890815434562902`*^9, 3.689081550551998*^9}, {3.68908158707731*^9,
151   3.689081588014647*^9}, 3.689081622365012*^9, {3.689237257598157*^9,
152   3.6892372597484207`*^9}, {3.698141029132862*^9, 3.698141037675376*^9}, {
153   3.739516042829097*^9, 3.739516048522016*^9}, {3.7525861214684143`*^9,
154   3.7525861238564997`*^9}, {3.7525862379032593`*^9, 3.752586239247014*^9}, {
155   3.752586549593165*^9,
156   3.752586550524284*^9}},ExpressionUUID->"727fcf80-7184-4d30-8321-\
157898e0adff3c3"],
158
159Cell[CellGroupData[{
160
161Cell[BoxData["\<\"This model implementation was created by\"\>"], "Print",
162 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
163  3.752586551359082*^9},ExpressionUUID->"3cb7ef64-a0ad-48d6-aa7f-\
164c467f40ca4ed"],
165
166Cell[BoxData["\<\"Wei.Liu\"\>"], "Print",
167 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
168  3.752586551368294*^9},ExpressionUUID->"0b9fe172-eaae-46fd-9660-\
169beaac82adc64"],
170
171Cell[BoxData[
172 InterpretationBox[
173  RowBox[{"\<\"Model Version: \"\>", "\[InvisibleSpace]", "\<\"3.0.0\"\>"}],
174  SequenceForm["Model Version: ", "3.0.0"],
175  Editable->False]], "Print",
176 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
177  3.7525865513791122`*^9},ExpressionUUID->"951211cc-7b8e-46e0-952e-\
1787713439b9cbd"],
179
180Cell[BoxData["\<\"http://feynrules.phys.ucl.ac.be\"\>"], "Print",
181 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
182  3.752586551389943*^9},ExpressionUUID->"e2c3383a-79c0-4218-9cb1-\
183df23ed83f6ba"],
184
185Cell[BoxData["\<\"For more information, type ModelInformation[].\"\>"], \
186"Print",
187 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
188  3.752586551399865*^9},ExpressionUUID->"f53a7322-16ab-4b32-bfff-\
18925f3cd920c57"],
190
191Cell[BoxData["\<\"\"\>"], "Print",
192 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
193  3.752586551409162*^9},ExpressionUUID->"883318cc-ed59-4fc2-a515-\
1944c769f6032cf"],
195
196Cell[BoxData["\<\"   - Loading particle classes.\"\>"], "Print",
197 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
198  3.752586551418211*^9},ExpressionUUID->"1638de5a-c3a1-4328-94bd-\
1993bad38dbb4ce"],
200
201Cell[BoxData["\<\"   - Loading gauge group classes.\"\>"], "Print",
202 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
203  3.752586551548167*^9},ExpressionUUID->"5fc4a8ba-81a0-4c32-b362-\
20496388c217d5b"],
205
206Cell[BoxData["\<\"   - Loading parameter classes.\"\>"], "Print",
207 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
208  3.7525865515579357`*^9},ExpressionUUID->"6c424d6c-6a36-4974-afc6-\
209729cbcc1053c"],
210
211Cell[BoxData[
212 InterpretationBox[
213  RowBox[{"\<\"\\nModel \"\>", "\[InvisibleSpace]", "\<\"B-L-N\"\>",
214   "\[InvisibleSpace]", "\<\" loaded.\"\>"}],
215  SequenceForm["\nModel ", "B-L-N", " loaded."],
216  Editable->False]], "Print",
217 CellChangeTimes->{3.7525862613669777`*^9, 3.752586318907052*^9,
218  3.752586551647098*^9},ExpressionUUID->"9b611f16-afc7-4b66-82a7-\
2195039439bb98b"]
220}, Open  ]]
221}, Open  ]],
222
223Cell[CellGroupData[{
224
225Cell[BoxData[
226 RowBox[{"LoadRestriction", "[",
227  RowBox[{"\"\<DiagonalCKM.rst\>\"", ",", "\"\<Massless.rst\>\""}],
228  "]"}]], "Input",
229 CellChangeTimes->{{3.6892351929306707`*^9, 3.6892352154387836`*^9}, {
230  3.689235267224637*^9,
231  3.689235293814735*^9}},ExpressionUUID->"4b8739bd-5bf0-49ad-97a5-\
2323d9fa7c99579"],
233
234Cell[CellGroupData[{
235
236Cell[BoxData[
237 InterpretationBox[
238  RowBox[{"\<\"Loading restrictions from \"\>",
239   "\[InvisibleSpace]", "\<\"DiagonalCKM.rst\"\>",
240   "\[InvisibleSpace]", "\<\" : \"\>", "\[InvisibleSpace]",
241   DynamicBox[ToBoxes[PRIVATE`FR$restrictionCounter, StandardForm],
242    ImageSizeCache->{14., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
243   "\[InvisibleSpace]", "3"}],
244  SequenceForm["Loading restrictions from ", "DiagonalCKM.rst", " : ",
245   Dynamic[PRIVATE`FR$restrictionCounter], " / ", 3],
246  Editable->False]], "Print",
247 CellChangeTimes->{3.689235320859063*^9, 3.689237266640202*^9,
248  3.6892380683408737`*^9, 3.739522176706942*^9,
249  3.752586555264031*^9},ExpressionUUID->"3782e8d9-18e8-4691-b2b1-\
250025e874f84eb"],
251
252Cell[BoxData[
253 InterpretationBox[
254  RowBox[{"\<\"Loading restrictions from \"\>",
255   "\[InvisibleSpace]", "\<\"Massless.rst\"\>",
256   "\[InvisibleSpace]", "\<\" : \"\>", "\[InvisibleSpace]",
257   DynamicBox[ToBoxes[PRIVATE`FR$restrictionCounter, StandardForm],
258    ImageSizeCache->{14., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
259   "\[InvisibleSpace]", "18"}],
260  SequenceForm["Loading restrictions from ", "Massless.rst", " : ",
261   Dynamic[PRIVATE`FR$restrictionCounter], " / ", 18],
262  Editable->False]], "Print",
263 CellChangeTimes->{3.689235320859063*^9, 3.689237266640202*^9,
264  3.6892380683408737`*^9, 3.739522176706942*^9,
265  3.752586555489924*^9},ExpressionUUID->"f8713eb4-cfe3-4e1a-9f3d-\
2661e9d219a4f47"],
267
268Cell[BoxData["\<\"Restrictions loaded.\"\>"], "Print",
269 CellChangeTimes->{3.689235320859063*^9, 3.689237266640202*^9,
270  3.6892380683408737`*^9, 3.739522176706942*^9,
271  3.752586555667514*^9},ExpressionUUID->"c22c666c-2efa-425a-8f18-\
2728fc27f0b862d"]
273}, Open  ]]
274}, Open  ]]
275}, Open  ]],
276
277Cell[CellGroupData[{
278
279Cell["Output UFO", "Section",
280 CellChangeTimes->{{3.6890818822114897`*^9, 3.6890818973544817`*^9},
281   3.7525868691057997`*^9},ExpressionUUID->"cff68957-367f-4f2f-98ba-\
2827c7553e892a7"],
283
284Cell[CellGroupData[{
285
286Cell[BoxData[
287 RowBox[{"WriteUFO", "[", "LBL", "]"}]], "Input",
288 CellChangeTimes->{{3.7525863566352863`*^9,
289  3.752586356821493*^9}},ExpressionUUID->"60393aa8-ea16-488d-bb1d-\
290e5906c2ae5c0"],
291
292Cell[CellGroupData[{
293
294Cell[BoxData["\<\" --- Universal FeynRules Output (UFO) v 1.1 ---\"\>"], \
295"Print",
296 CellChangeTimes->{3.75258636072466*^9,
297  3.752586567760618*^9},ExpressionUUID->"3bb558fc-970b-4253-b941-\
298191ad5e471b0"],
299
300Cell[BoxData[
301 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
302  StripOnInput->False,
303  LineColor->RGBColor[1, 0.5, 0],
304  FrontFaceColor->RGBColor[1, 0.5, 0],
305  BackFaceColor->RGBColor[1, 0.5, 0],
306  GraphicsColor->RGBColor[1, 0.5, 0],
307  FontWeight->Bold,
308  FontColor->RGBColor[1, 0.5, 0]]], "Print",
309 CellChangeTimes->{3.75258636072466*^9,
310  3.752586568279518*^9},ExpressionUUID->"1a0ffd90-4878-448f-99cb-\
3112e127367d975"],
312
313Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
314 CellChangeTimes->{3.75258636072466*^9,
315  3.752586568285993*^9},ExpressionUUID->"46c8ba84-1571-45f6-9ef5-\
31631aec0601de9"],
317
318Cell[BoxData[
319 InterpretationBox[
320  RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "4",
321   "\[InvisibleSpace]", "\<\" cores\"\>"}],
322  SequenceForm["Expanding the indices over ", 4, " cores"],
323  Editable->False]], "Print",
324 CellChangeTimes->{3.75258636072466*^9,
325  3.752586568289074*^9},ExpressionUUID->"ff3885d6-45c9-4cd2-8b7e-\
326bd652c4749a0"],
327
328Cell[BoxData["\<\"Collecting the different structures that enter the \
329vertex.\"\>"], "Print",
330 CellChangeTimes->{3.75258636072466*^9,
331  3.752586579829075*^9},ExpressionUUID->"e4649fc0-9fc7-47f5-94a4-\
3326933fbcb7233"],
333
334Cell[BoxData[
335 InterpretationBox[
336  RowBox[{
337  "176", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been \
338found -> starting the computation: \"\>", "\[InvisibleSpace]",
339   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
340    ImageSizeCache->{22., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
341   "\[InvisibleSpace]", "176", "\[InvisibleSpace]", "\<\".\"\>"}],
342  SequenceForm[
343  176, " possible non-zero vertices have been found -> starting the \
344computation: ",
345   Dynamic[FeynRules`FR$FeynmanRules], " / ", 176, "."],
346  Editable->False]], "Print",
347 CellChangeTimes->{3.75258636072466*^9,
348  3.7525865799252377`*^9},ExpressionUUID->"2949e7c6-3976-4ab7-b881-\
349a1f9604f2c48"],
350
351Cell[BoxData[
352 InterpretationBox[
353  RowBox[{"167", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
354  SequenceForm[167, " vertices obtained."],
355  Editable->False]], "Print",
356 CellChangeTimes->{3.75258636072466*^9,
357  3.752586586282378*^9},ExpressionUUID->"17e861c0-d047-4d9d-a90c-\
3580791e389f38a"],
359
360Cell[BoxData[
361 InterpretationBox[
362  RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
363   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\" cores: \"\>",
364   "\[InvisibleSpace]",
365   DynamicBox[ToBoxes[FeynRules`FR$Count1, StandardForm],
366    ImageSizeCache->{22., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
367   "\[InvisibleSpace]", "167"}],
368  SequenceForm[
369  "Flavor expansion of the vertices distributed over ", 4, " cores: ",
370   Dynamic[FeynRules`FR$Count1], " / ", 167],
371  Editable->False]], "Print",
372 CellChangeTimes->{3.75258636072466*^9,
373  3.752586590163343*^9},ExpressionUUID->"77b0f24e-1c2f-427a-aee7-\
374dd1e23fc4d3a"],
375
376Cell[BoxData["\<\"   - Saved vertices in InterfaceRun[ 1 ].\"\>"], "Print",
377 CellChangeTimes->{3.75258636072466*^9,
378  3.752586599061811*^9},ExpressionUUID->"eeb0e259-0af0-4be1-a034-\
379664a1b102be5"]
380}, Open  ]],
381
382Cell[BoxData[
383 TemplateBox[{
384  "QN","NonConserv",
385   "\"Warning: non quantum number conserving vertex encountered!\"",2,6,1,
386   21387905047226568059,"Local","FeynRules`QN"},
387  "MessageTemplate2"]], "Message", "MSG",
388 CellChangeTimes->{3.752586394154263*^9,
389  3.752586599117281*^9},ExpressionUUID->"1da200ee-4d69-4829-96d4-\
3900b1dac4ecf6e"],
391
392Cell[BoxData[
393 InterpretationBox[
394  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
395   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
396   "\[InvisibleSpace]",
397   RowBox[{"{",
398    RowBox[{
399     SuperscriptBox["GP", "\[Dagger]"], ",",
400     OverscriptBox["e", "\<\"-\"\>"], ",", "nL1"}], "}"}],
401   "\[InvisibleSpace]", "\<\".\"\>"}],
402  SequenceForm[
403  "Quantum number ", $CellContext`LeptonNumber,
404   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`ebar, \
405$CellContext`nL1}, "."],
406  Editable->False]], "Print",
407 CellChangeTimes->{3.75258636072466*^9,
408  3.752586599232669*^9},ExpressionUUID->"e68f31e0-a763-49d5-8c24-\
40997dd33d5e3ac"],
410
411Cell[BoxData[
412 TemplateBox[{
413  "QN","NonConserv",
414   "\"Warning: non quantum number conserving vertex encountered!\"",2,6,2,
415   21387905047226568059,"Local","FeynRules`QN"},
416  "MessageTemplate2"]], "Message", "MSG",
417 CellChangeTimes->{3.752586394154263*^9,
418  3.752586599236505*^9},ExpressionUUID->"87ff761f-c457-473c-af0f-\
419697e6b3e86e8"],
420
421Cell[BoxData[
422 InterpretationBox[
423  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
424   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
425   "\[InvisibleSpace]",
426   RowBox[{"{",
427    RowBox[{
428     SuperscriptBox["GP", "\[Dagger]"], ",",
429     OverscriptBox["e", "\<\"-\"\>"], ",", "nL1"}], "}"}],
430   "\[InvisibleSpace]", "\<\".\"\>"}],
431  SequenceForm[
432  "Quantum number ", $CellContext`BL,
433   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`ebar, \
434$CellContext`nL1}, "."],
435  Editable->False]], "Print",
436 CellChangeTimes->{3.75258636072466*^9,
437  3.752586599251998*^9},ExpressionUUID->"9d082fe5-5218-4862-a23d-\
4389712f5a06e02"],
439
440Cell[BoxData[
441 TemplateBox[{
442  "QN","NonConserv",
443   "\"Warning: non quantum number conserving vertex encountered!\"",2,6,3,
444   21387905047226568059,"Local","FeynRules`QN"},
445  "MessageTemplate2"]], "Message", "MSG",
446 CellChangeTimes->{3.752586394154263*^9,
447  3.752586599255438*^9},ExpressionUUID->"f4430361-1e8f-42e1-96a3-\
448424e1ee0447a"],
449
450Cell[BoxData[
451 TemplateBox[{
452  "General","stop",
453   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"QN\\\", \\\"::\\\", \
454\\\"NonConserv\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
455calculation.\"",2,6,4,21387905047226568059,"Local"},
456  "MessageTemplate"]], "Message", "MSG",
457 CellChangeTimes->{3.752586394154263*^9,
458  3.752586599273332*^9},ExpressionUUID->"2507d153-bcb5-48cd-a1d4-\
45941e9df120726"],
460
461Cell[CellGroupData[{
462
463Cell[BoxData[
464 InterpretationBox[
465  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
466   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
467   "\[InvisibleSpace]",
468   RowBox[{"{",
469    RowBox[{
470     SuperscriptBox["GP", "\[Dagger]"], ",",
471     OverscriptBox["mu", "\<\"-\"\>"], ",", "nL2"}], "}"}],
472   "\[InvisibleSpace]", "\<\".\"\>"}],
473  SequenceForm[
474  "Quantum number ", $CellContext`LeptonNumber,
475   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`mubar, \
476$CellContext`nL2}, "."],
477  Editable->False]], "Print",
478 CellChangeTimes->{3.75258636072466*^9,
479  3.752586599290473*^9},ExpressionUUID->"de86fac1-9744-443c-a61e-\
4804f08151886be"],
481
482Cell[BoxData[
483 InterpretationBox[
484  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
485   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
486   "\[InvisibleSpace]",
487   RowBox[{"{",
488    RowBox[{
489     SuperscriptBox["GP", "\[Dagger]"], ",",
490     OverscriptBox["mu", "\<\"-\"\>"], ",", "nL2"}], "}"}],
491   "\[InvisibleSpace]", "\<\".\"\>"}],
492  SequenceForm[
493  "Quantum number ", $CellContext`BL,
494   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`mubar, \
495$CellContext`nL2}, "."],
496  Editable->False]], "Print",
497 CellChangeTimes->{3.75258636072466*^9,
498  3.752586599293847*^9},ExpressionUUID->"5144fe76-a0bd-44d4-a40d-\
4999c392d19483b"],
500
501Cell[BoxData[
502 InterpretationBox[
503  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
504   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
505   "\[InvisibleSpace]",
506   RowBox[{"{",
507    RowBox[{
508     SuperscriptBox["GP", "\[Dagger]"], ",",
509     OverscriptBox["ta", "\<\"-\"\>"], ",", "nL3"}], "}"}],
510   "\[InvisibleSpace]", "\<\".\"\>"}],
511  SequenceForm[
512  "Quantum number ", $CellContext`LeptonNumber,
513   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`tabar, \
514$CellContext`nL3}, "."],
515  Editable->False]], "Print",
516 CellChangeTimes->{3.75258636072466*^9,
517  3.752586599302188*^9},ExpressionUUID->"21c61ac1-18f6-434e-8870-\
518aa60fce68f10"],
519
520Cell[BoxData[
521 InterpretationBox[
522  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
523   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
524   "\[InvisibleSpace]",
525   RowBox[{"{",
526    RowBox[{
527     SuperscriptBox["GP", "\[Dagger]"], ",",
528     OverscriptBox["ta", "\<\"-\"\>"], ",", "nL3"}], "}"}],
529   "\[InvisibleSpace]", "\<\".\"\>"}],
530  SequenceForm[
531  "Quantum number ", $CellContext`BL,
532   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`tabar, \
533$CellContext`nL3}, "."],
534  Editable->False]], "Print",
535 CellChangeTimes->{3.75258636072466*^9,
536  3.752586599306254*^9},ExpressionUUID->"df2c0b22-1819-4511-8741-\
53759332e64876c"],
538
539Cell[BoxData[
540 InterpretationBox[
541  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
542   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
543   "\[InvisibleSpace]",
544   RowBox[{"{",
545    RowBox[{
546     SuperscriptBox["GP", "\[Dagger]"], ",",
547     OverscriptBox["e", "\<\"-\"\>"], ",", "nH1"}], "}"}],
548   "\[InvisibleSpace]", "\<\".\"\>"}],
549  SequenceForm[
550  "Quantum number ", $CellContext`LeptonNumber,
551   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`ebar, \
552$CellContext`nH1}, "."],
553  Editable->False]], "Print",
554 CellChangeTimes->{3.75258636072466*^9,
555  3.752586599309422*^9},ExpressionUUID->"8d0c13f0-96f8-4012-8df8-\
55627e0c217a29d"],
557
558Cell[BoxData[
559 InterpretationBox[
560  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
561   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
562   "\[InvisibleSpace]",
563   RowBox[{"{",
564    RowBox[{
565     SuperscriptBox["GP", "\[Dagger]"], ",",
566     OverscriptBox["e", "\<\"-\"\>"], ",", "nH1"}], "}"}],
567   "\[InvisibleSpace]", "\<\".\"\>"}],
568  SequenceForm[
569  "Quantum number ", $CellContext`BL,
570   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`ebar, \
571$CellContext`nH1}, "."],
572  Editable->False]], "Print",
573 CellChangeTimes->{3.75258636072466*^9,
574  3.752586599312504*^9},ExpressionUUID->"f6572706-cc54-4c37-b142-\
5756ba70a626fc9"],
576
577Cell[BoxData[
578 InterpretationBox[
579  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
580   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
581   "\[InvisibleSpace]",
582   RowBox[{"{",
583    RowBox[{
584     SuperscriptBox["GP", "\[Dagger]"], ",",
585     OverscriptBox["mu", "\<\"-\"\>"], ",", "nH2"}], "}"}],
586   "\[InvisibleSpace]", "\<\".\"\>"}],
587  SequenceForm[
588  "Quantum number ", $CellContext`LeptonNumber,
589   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`mubar, \
590$CellContext`nH2}, "."],
591  Editable->False]], "Print",
592 CellChangeTimes->{3.75258636072466*^9,
593  3.7525865993160353`*^9},ExpressionUUID->"7a9689ba-1b13-491f-a9e7-\
5942ef1ba870a82"],
595
596Cell[BoxData[
597 InterpretationBox[
598  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
599   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
600   "\[InvisibleSpace]",
601   RowBox[{"{",
602    RowBox[{
603     SuperscriptBox["GP", "\[Dagger]"], ",",
604     OverscriptBox["mu", "\<\"-\"\>"], ",", "nH2"}], "}"}],
605   "\[InvisibleSpace]", "\<\".\"\>"}],
606  SequenceForm[
607  "Quantum number ", $CellContext`BL,
608   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`mubar, \
609$CellContext`nH2}, "."],
610  Editable->False]], "Print",
611 CellChangeTimes->{3.75258636072466*^9,
612  3.7525865993191633`*^9},ExpressionUUID->"2890cb22-e8cf-4b01-91ad-\
6130538698fbf56"],
614
615Cell[BoxData[
616 InterpretationBox[
617  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
618   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
619   "\[InvisibleSpace]",
620   RowBox[{"{",
621    RowBox[{
622     SuperscriptBox["GP", "\[Dagger]"], ",",
623     OverscriptBox["ta", "\<\"-\"\>"], ",", "nH3"}], "}"}],
624   "\[InvisibleSpace]", "\<\".\"\>"}],
625  SequenceForm[
626  "Quantum number ", $CellContext`LeptonNumber,
627   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`tabar, \
628$CellContext`nH3}, "."],
629  Editable->False]], "Print",
630 CellChangeTimes->{3.75258636072466*^9,
631  3.752586599323207*^9},ExpressionUUID->"fb9faad8-ac78-4511-834e-\
632a439dedadb3e"],
633
634Cell[BoxData[
635 InterpretationBox[
636  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
637   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
638   "\[InvisibleSpace]",
639   RowBox[{"{",
640    RowBox[{
641     SuperscriptBox["GP", "\[Dagger]"], ",",
642     OverscriptBox["ta", "\<\"-\"\>"], ",", "nH3"}], "}"}],
643   "\[InvisibleSpace]", "\<\".\"\>"}],
644  SequenceForm[
645  "Quantum number ", $CellContext`BL,
646   " not conserved in vertex ", {$CellContext`GPbar, $CellContext`tabar, \
647$CellContext`nH3}, "."],
648  Editable->False]], "Print",
649 CellChangeTimes->{3.75258636072466*^9,
650  3.7525865993267*^9},ExpressionUUID->"c91772ae-833a-4695-98b8-273f6de2370b"],
651
652Cell[BoxData[
653 InterpretationBox[
654  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
655   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
656   "\[InvisibleSpace]",
657   RowBox[{"{",
658    RowBox[{"GP", ",",
659     OverscriptBox["nL1", "\<\"-\"\>"], ",", "e"}], "}"}],
660   "\[InvisibleSpace]", "\<\".\"\>"}],
661  SequenceForm[
662  "Quantum number ", $CellContext`LeptonNumber,
663   " not conserved in vertex ", {$CellContext`GP, $CellContext`nL1bar,
664    FeynRules`e}, "."],
665  Editable->False]], "Print",
666 CellChangeTimes->{3.75258636072466*^9,
667  3.75258659933045*^9},ExpressionUUID->"06294c2e-1e77-4892-8b2f-f7b3d054ac0f"],
668
669Cell[BoxData[
670 InterpretationBox[
671  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
672   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
673   "\[InvisibleSpace]",
674   RowBox[{"{",
675    RowBox[{"GP", ",",
676     OverscriptBox["nL1", "\<\"-\"\>"], ",", "e"}], "}"}],
677   "\[InvisibleSpace]", "\<\".\"\>"}],
678  SequenceForm[
679  "Quantum number ", $CellContext`BL,
680   " not conserved in vertex ", {$CellContext`GP, $CellContext`nL1bar,
681    FeynRules`e}, "."],
682  Editable->False]], "Print",
683 CellChangeTimes->{3.75258636072466*^9,
684  3.752586599333782*^9},ExpressionUUID->"10b27614-b8ac-4f11-a577-\
68575a98dfdaa16"],
686
687Cell[BoxData[
688 InterpretationBox[
689  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
690   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
691   "\[InvisibleSpace]",
692   RowBox[{"{",
693    RowBox[{"GP", ",",
694     OverscriptBox["nL2", "\<\"-\"\>"], ",", "mu"}], "}"}],
695   "\[InvisibleSpace]", "\<\".\"\>"}],
696  SequenceForm[
697  "Quantum number ", $CellContext`LeptonNumber,
698   " not conserved in vertex ", {$CellContext`GP, $CellContext`nL2bar,
699    FeynRules`mu}, "."],
700  Editable->False]], "Print",
701 CellChangeTimes->{3.75258636072466*^9,
702  3.7525865993374043`*^9},ExpressionUUID->"bc46883b-d5b6-45ad-847a-\
703971a72c01589"],
704
705Cell[BoxData[
706 InterpretationBox[
707  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
708   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
709   "\[InvisibleSpace]",
710   RowBox[{"{",
711    RowBox[{"GP", ",",
712     OverscriptBox["nL2", "\<\"-\"\>"], ",", "mu"}], "}"}],
713   "\[InvisibleSpace]", "\<\".\"\>"}],
714  SequenceForm[
715  "Quantum number ", $CellContext`BL,
716   " not conserved in vertex ", {$CellContext`GP, $CellContext`nL2bar,
717    FeynRules`mu}, "."],
718  Editable->False]], "Print",
719 CellChangeTimes->{3.75258636072466*^9,
720  3.752586599341066*^9},ExpressionUUID->"0f6dfc81-9c18-4558-ade1-\
721fed3f68536d9"],
722
723Cell[BoxData[
724 InterpretationBox[
725  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
726   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
727   "\[InvisibleSpace]",
728   RowBox[{"{",
729    RowBox[{"GP", ",",
730     OverscriptBox["nL3", "\<\"-\"\>"], ",", "ta"}], "}"}],
731   "\[InvisibleSpace]", "\<\".\"\>"}],
732  SequenceForm[
733  "Quantum number ", $CellContext`LeptonNumber,
734   " not conserved in vertex ", {$CellContext`GP, $CellContext`nL3bar, \
735$CellContext`ta}, "."],
736  Editable->False]], "Print",
737 CellChangeTimes->{3.75258636072466*^9,
738  3.752586599344486*^9},ExpressionUUID->"22dae856-a9ba-403e-849d-\
7395ed30adc66ab"],
740
741Cell[BoxData[
742 InterpretationBox[
743  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
744   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
745   "\[InvisibleSpace]",
746   RowBox[{"{",
747    RowBox[{"GP", ",",
748     OverscriptBox["nL3", "\<\"-\"\>"], ",", "ta"}], "}"}],
749   "\[InvisibleSpace]", "\<\".\"\>"}],
750  SequenceForm[
751  "Quantum number ", $CellContext`BL,
752   " not conserved in vertex ", {$CellContext`GP, $CellContext`nL3bar, \
753$CellContext`ta}, "."],
754  Editable->False]], "Print",
755 CellChangeTimes->{3.75258636072466*^9,
756  3.752586599348166*^9},ExpressionUUID->"d73af4a6-81bb-4637-8615-\
75740a8b92ad0d4"],
758
759Cell[BoxData[
760 InterpretationBox[
761  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
762   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
763   "\[InvisibleSpace]",
764   RowBox[{"{",
765    RowBox[{"GP", ",",
766     OverscriptBox["nH1", "\<\"-\"\>"], ",", "e"}], "}"}],
767   "\[InvisibleSpace]", "\<\".\"\>"}],
768  SequenceForm[
769  "Quantum number ", $CellContext`LeptonNumber,
770   " not conserved in vertex ", {$CellContext`GP, $CellContext`nH1bar,
771    FeynRules`e}, "."],
772  Editable->False]], "Print",
773 CellChangeTimes->{3.75258636072466*^9,
774  3.7525865993514967`*^9},ExpressionUUID->"b9a936a1-7533-4e5f-af83-\
775110fef462596"],
776
777Cell[BoxData[
778 InterpretationBox[
779  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
780   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
781   "\[InvisibleSpace]",
782   RowBox[{"{",
783    RowBox[{"GP", ",",
784     OverscriptBox["nH1", "\<\"-\"\>"], ",", "e"}], "}"}],
785   "\[InvisibleSpace]", "\<\".\"\>"}],
786  SequenceForm[
787  "Quantum number ", $CellContext`BL,
788   " not conserved in vertex ", {$CellContext`GP, $CellContext`nH1bar,
789    FeynRules`e}, "."],
790  Editable->False]], "Print",
791 CellChangeTimes->{3.75258636072466*^9,
792  3.752586599355164*^9},ExpressionUUID->"e5c18dd2-013e-4303-b255-\
7930840e3a10485"],
794
795Cell[BoxData[
796 InterpretationBox[
797  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
798   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
799   "\[InvisibleSpace]",
800   RowBox[{"{",
801    RowBox[{"GP", ",",
802     OverscriptBox["nH2", "\<\"-\"\>"], ",", "mu"}], "}"}],
803   "\[InvisibleSpace]", "\<\".\"\>"}],
804  SequenceForm[
805  "Quantum number ", $CellContext`LeptonNumber,
806   " not conserved in vertex ", {$CellContext`GP, $CellContext`nH2bar,
807    FeynRules`mu}, "."],
808  Editable->False]], "Print",
809 CellChangeTimes->{3.75258636072466*^9,
810  3.752586599358485*^9},ExpressionUUID->"e95ec029-349e-4558-a926-\
81122d6fcd08cda"],
812
813Cell[BoxData[
814 InterpretationBox[
815  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
816   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
817   "\[InvisibleSpace]",
818   RowBox[{"{",
819    RowBox[{"GP", ",",
820     OverscriptBox["nH2", "\<\"-\"\>"], ",", "mu"}], "}"}],
821   "\[InvisibleSpace]", "\<\".\"\>"}],
822  SequenceForm[
823  "Quantum number ", $CellContext`BL,
824   " not conserved in vertex ", {$CellContext`GP, $CellContext`nH2bar,
825    FeynRules`mu}, "."],
826  Editable->False]], "Print",
827 CellChangeTimes->{3.75258636072466*^9,
828  3.75258659936194*^9},ExpressionUUID->"a6bcacd5-9e70-4a22-84d7-66c1b232283f"],
829
830Cell[BoxData[
831 InterpretationBox[
832  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
833   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
834   "\[InvisibleSpace]",
835   RowBox[{"{",
836    RowBox[{"GP", ",",
837     OverscriptBox["nH3", "\<\"-\"\>"], ",", "ta"}], "}"}],
838   "\[InvisibleSpace]", "\<\".\"\>"}],
839  SequenceForm[
840  "Quantum number ", $CellContext`LeptonNumber,
841   " not conserved in vertex ", {$CellContext`GP, $CellContext`nH3bar, \
842$CellContext`ta}, "."],
843  Editable->False]], "Print",
844 CellChangeTimes->{3.75258636072466*^9,
845  3.752586599365385*^9},ExpressionUUID->"8fc0994b-01a5-4326-9b68-\
846b4af5054442b"],
847
848Cell[BoxData[
849 InterpretationBox[
850  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
851   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
852   "\[InvisibleSpace]",
853   RowBox[{"{",
854    RowBox[{"GP", ",",
855     OverscriptBox["nH3", "\<\"-\"\>"], ",", "ta"}], "}"}],
856   "\[InvisibleSpace]", "\<\".\"\>"}],
857  SequenceForm[
858  "Quantum number ", $CellContext`BL,
859   " not conserved in vertex ", {$CellContext`GP, $CellContext`nH3bar, \
860$CellContext`ta}, "."],
861  Editable->False]], "Print",
862 CellChangeTimes->{3.75258636072466*^9,
863  3.752586599369217*^9},ExpressionUUID->"59ce06cc-2259-421a-82f9-\
86488b4c7a66555"],
865
866Cell[BoxData[
867 InterpretationBox[
868  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
869   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
870   "\[InvisibleSpace]",
871   RowBox[{"{",
872    RowBox[{"W", ",",
873     OverscriptBox["nL1", "\<\"-\"\>"], ",", "e"}], "}"}],
874   "\[InvisibleSpace]", "\<\".\"\>"}],
875  SequenceForm[
876  "Quantum number ", $CellContext`LeptonNumber, " not conserved in vertex ", {
877   FeynRules`W, $CellContext`nL1bar, FeynRules`e}, "."],
878  Editable->False]], "Print",
879 CellChangeTimes->{3.75258636072466*^9,
880  3.7525865993729897`*^9},ExpressionUUID->"ecc32ab0-e837-43a7-b78a-\
8814fa07b318235"],
882
883Cell[BoxData[
884 InterpretationBox[
885  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
886   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
887   "\[InvisibleSpace]",
888   RowBox[{"{",
889    RowBox[{"W", ",",
890     OverscriptBox["nL1", "\<\"-\"\>"], ",", "e"}], "}"}],
891   "\[InvisibleSpace]", "\<\".\"\>"}],
892  SequenceForm[
893  "Quantum number ", $CellContext`BL, " not conserved in vertex ", {
894   FeynRules`W, $CellContext`nL1bar, FeynRules`e}, "."],
895  Editable->False]], "Print",
896 CellChangeTimes->{3.75258636072466*^9,
897  3.75258659937644*^9},ExpressionUUID->"2a55a825-2f47-4511-b9d1-41bd7fd98a14"],
898
899Cell[BoxData[
900 InterpretationBox[
901  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
902   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
903   "\[InvisibleSpace]",
904   RowBox[{"{",
905    RowBox[{"W", ",",
906     OverscriptBox["nL2", "\<\"-\"\>"], ",", "mu"}], "}"}],
907   "\[InvisibleSpace]", "\<\".\"\>"}],
908  SequenceForm[
909  "Quantum number ", $CellContext`LeptonNumber, " not conserved in vertex ", {
910   FeynRules`W, $CellContext`nL2bar, FeynRules`mu}, "."],
911  Editable->False]], "Print",
912 CellChangeTimes->{3.75258636072466*^9,
913  3.7525865993802433`*^9},ExpressionUUID->"52d96e5d-e023-4522-9277-\
914557e61deebef"],
915
916Cell[BoxData[
917 InterpretationBox[
918  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
919   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
920   "\[InvisibleSpace]",
921   RowBox[{"{",
922    RowBox[{"W", ",",
923     OverscriptBox["nL2", "\<\"-\"\>"], ",", "mu"}], "}"}],
924   "\[InvisibleSpace]", "\<\".\"\>"}],
925  SequenceForm[
926  "Quantum number ", $CellContext`BL, " not conserved in vertex ", {
927   FeynRules`W, $CellContext`nL2bar, FeynRules`mu}, "."],
928  Editable->False]], "Print",
929 CellChangeTimes->{3.75258636072466*^9,
930  3.7525865993839073`*^9},ExpressionUUID->"4896e1bb-a29e-4f68-81aa-\
931de230cb42ea3"],
932
933Cell[BoxData[
934 InterpretationBox[
935  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
936   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
937   "\[InvisibleSpace]",
938   RowBox[{"{",
939    RowBox[{"W", ",",
940     OverscriptBox["nL3", "\<\"-\"\>"], ",", "ta"}], "}"}],
941   "\[InvisibleSpace]", "\<\".\"\>"}],
942  SequenceForm[
943  "Quantum number ", $CellContext`LeptonNumber, " not conserved in vertex ", {
944   FeynRules`W, $CellContext`nL3bar, $CellContext`ta}, "."],
945  Editable->False]], "Print",
946 CellChangeTimes->{3.75258636072466*^9,
947  3.752586599387744*^9},ExpressionUUID->"8343085c-307a-4f3d-ac7e-\
948ff6c5d3b9cf7"],
949
950Cell[BoxData[
951 InterpretationBox[
952  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
953   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
954   "\[InvisibleSpace]",
955   RowBox[{"{",
956    RowBox[{"W", ",",
957     OverscriptBox["nL3", "\<\"-\"\>"], ",", "ta"}], "}"}],
958   "\[InvisibleSpace]", "\<\".\"\>"}],
959  SequenceForm[
960  "Quantum number ", $CellContext`BL, " not conserved in vertex ", {
961   FeynRules`W, $CellContext`nL3bar, $CellContext`ta}, "."],
962  Editable->False]], "Print",
963 CellChangeTimes->{3.75258636072466*^9,
964  3.75258659939124*^9},ExpressionUUID->"5034b376-de8d-48db-b248-b4a3edd8bd92"],
965
966Cell[BoxData[
967 InterpretationBox[
968  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
969   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
970   "\[InvisibleSpace]",
971   RowBox[{"{",
972    RowBox[{"W", ",",
973     OverscriptBox["nH1", "\<\"-\"\>"], ",", "e"}], "}"}],
974   "\[InvisibleSpace]", "\<\".\"\>"}],
975  SequenceForm[
976  "Quantum number ", $CellContext`LeptonNumber, " not conserved in vertex ", {
977   FeynRules`W, $CellContext`nH1bar, FeynRules`e}, "."],
978  Editable->False]], "Print",
979 CellChangeTimes->{3.75258636072466*^9,
980  3.75258659939532*^9},ExpressionUUID->"d84eda65-f6b6-41be-9784-e855ff82d7f0"],
981
982Cell[BoxData[
983 InterpretationBox[
984  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
985   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
986   "\[InvisibleSpace]",
987   RowBox[{"{",
988    RowBox[{"W", ",",
989     OverscriptBox["nH1", "\<\"-\"\>"], ",", "e"}], "}"}],
990   "\[InvisibleSpace]", "\<\".\"\>"}],
991  SequenceForm[
992  "Quantum number ", $CellContext`BL, " not conserved in vertex ", {
993   FeynRules`W, $CellContext`nH1bar, FeynRules`e}, "."],
994  Editable->False]], "Print",
995 CellChangeTimes->{3.75258636072466*^9,
996  3.7525865993987837`*^9},ExpressionUUID->"f7b17aaa-5000-458d-abac-\
9972c2056a84b95"],
998
999Cell[BoxData[
1000 InterpretationBox[
1001  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1002   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1003   "\[InvisibleSpace]",
1004   RowBox[{"{",
1005    RowBox[{"W", ",",
1006     OverscriptBox["nH2", "\<\"-\"\>"], ",", "mu"}], "}"}],
1007   "\[InvisibleSpace]", "\<\".\"\>"}],
1008  SequenceForm[
1009  "Quantum number ", $CellContext`LeptonNumber, " not conserved in vertex ", {
1010   FeynRules`W, $CellContext`nH2bar, FeynRules`mu}, "."],
1011  Editable->False]], "Print",
1012 CellChangeTimes->{3.75258636072466*^9,
1013  3.7525865994026318`*^9},ExpressionUUID->"a4f49c1e-efd3-49be-a935-\
101498b4acb9d5e5"],
1015
1016Cell[BoxData[
1017 InterpretationBox[
1018  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1019   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1020   "\[InvisibleSpace]",
1021   RowBox[{"{",
1022    RowBox[{"W", ",",
1023     OverscriptBox["nH2", "\<\"-\"\>"], ",", "mu"}], "}"}],
1024   "\[InvisibleSpace]", "\<\".\"\>"}],
1025  SequenceForm[
1026  "Quantum number ", $CellContext`BL, " not conserved in vertex ", {
1027   FeynRules`W, $CellContext`nH2bar, FeynRules`mu}, "."],
1028  Editable->False]], "Print",
1029 CellChangeTimes->{3.75258636072466*^9,
1030  3.7525865994075193`*^9},ExpressionUUID->"8d6d8a6b-ea78-4213-93be-\
103137de394d49be"],
1032
1033Cell[BoxData[
1034 InterpretationBox[
1035  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1036   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1037   "\[InvisibleSpace]",
1038   RowBox[{"{",
1039    RowBox[{"W", ",",
1040     OverscriptBox["nH3", "\<\"-\"\>"], ",", "ta"}], "}"}],
1041   "\[InvisibleSpace]", "\<\".\"\>"}],
1042  SequenceForm[
1043  "Quantum number ", $CellContext`LeptonNumber, " not conserved in vertex ", {
1044   FeynRules`W, $CellContext`nH3bar, $CellContext`ta}, "."],
1045  Editable->False]], "Print",
1046 CellChangeTimes->{3.75258636072466*^9,
1047  3.752586599411663*^9},ExpressionUUID->"406570ec-68ec-468c-a56e-\
104808b9a22beedf"],
1049
1050Cell[BoxData[
1051 InterpretationBox[
1052  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1053   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1054   "\[InvisibleSpace]",
1055   RowBox[{"{",
1056    RowBox[{"W", ",",
1057     OverscriptBox["nH3", "\<\"-\"\>"], ",", "ta"}], "}"}],
1058   "\[InvisibleSpace]", "\<\".\"\>"}],
1059  SequenceForm[
1060  "Quantum number ", $CellContext`BL, " not conserved in vertex ", {
1061   FeynRules`W, $CellContext`nH3bar, $CellContext`ta}, "."],
1062  Editable->False]], "Print",
1063 CellChangeTimes->{3.75258636072466*^9,
1064  3.752586599415112*^9},ExpressionUUID->"2ca0919f-8f34-48c5-b865-\
10654e134fa01c12"],
1066
1067Cell[BoxData[
1068 InterpretationBox[
1069  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1070   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1071   "\[InvisibleSpace]",
1072   RowBox[{"{",
1073    RowBox[{
1074     SuperscriptBox["W", "\[Dagger]"], ",",
1075     OverscriptBox["e", "\<\"-\"\>"], ",", "nL1"}], "}"}],
1076   "\[InvisibleSpace]", "\<\".\"\>"}],
1077  SequenceForm[
1078  "Quantum number ", $CellContext`LeptonNumber,
1079   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`ebar, \
1080$CellContext`nL1}, "."],
1081  Editable->False]], "Print",
1082 CellChangeTimes->{3.75258636072466*^9,
1083  3.7525865994191313`*^9},ExpressionUUID->"04f97486-3bbb-494d-98f5-\
1084f304a6892984"],
1085
1086Cell[BoxData[
1087 InterpretationBox[
1088  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1089   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1090   "\[InvisibleSpace]",
1091   RowBox[{"{",
1092    RowBox[{
1093     SuperscriptBox["W", "\[Dagger]"], ",",
1094     OverscriptBox["e", "\<\"-\"\>"], ",", "nL1"}], "}"}],
1095   "\[InvisibleSpace]", "\<\".\"\>"}],
1096  SequenceForm[
1097  "Quantum number ", $CellContext`BL,
1098   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`ebar, \
1099$CellContext`nL1}, "."],
1100  Editable->False]], "Print",
1101 CellChangeTimes->{3.75258636072466*^9,
1102  3.752586599422738*^9},ExpressionUUID->"801cc69c-9d6b-4b55-a0a6-\
1103787fdd86df08"],
1104
1105Cell[BoxData[
1106 InterpretationBox[
1107  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1108   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1109   "\[InvisibleSpace]",
1110   RowBox[{"{",
1111    RowBox[{
1112     SuperscriptBox["W", "\[Dagger]"], ",",
1113     OverscriptBox["mu", "\<\"-\"\>"], ",", "nL2"}], "}"}],
1114   "\[InvisibleSpace]", "\<\".\"\>"}],
1115  SequenceForm[
1116  "Quantum number ", $CellContext`LeptonNumber,
1117   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`mubar, \
1118$CellContext`nL2}, "."],
1119  Editable->False]], "Print",
1120 CellChangeTimes->{3.75258636072466*^9,
1121  3.752586599426503*^9},ExpressionUUID->"c1a2c9e9-821a-4c45-afd6-\
11229e6ac36a5d15"],
1123
1124Cell[BoxData[
1125 InterpretationBox[
1126  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1127   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1128   "\[InvisibleSpace]",
1129   RowBox[{"{",
1130    RowBox[{
1131     SuperscriptBox["W", "\[Dagger]"], ",",
1132     OverscriptBox["mu", "\<\"-\"\>"], ",", "nL2"}], "}"}],
1133   "\[InvisibleSpace]", "\<\".\"\>"}],
1134  SequenceForm[
1135  "Quantum number ", $CellContext`BL,
1136   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`mubar, \
1137$CellContext`nL2}, "."],
1138  Editable->False]], "Print",
1139 CellChangeTimes->{3.75258636072466*^9,
1140  3.752586599429879*^9},ExpressionUUID->"75b8b6ed-b429-40f2-a752-\
11418a7b65023c2b"],
1142
1143Cell[BoxData[
1144 InterpretationBox[
1145  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1146   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1147   "\[InvisibleSpace]",
1148   RowBox[{"{",
1149    RowBox[{
1150     SuperscriptBox["W", "\[Dagger]"], ",",
1151     OverscriptBox["ta", "\<\"-\"\>"], ",", "nL3"}], "}"}],
1152   "\[InvisibleSpace]", "\<\".\"\>"}],
1153  SequenceForm[
1154  "Quantum number ", $CellContext`LeptonNumber,
1155   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`tabar, \
1156$CellContext`nL3}, "."],
1157  Editable->False]], "Print",
1158 CellChangeTimes->{3.75258636072466*^9,
1159  3.752586599433034*^9},ExpressionUUID->"b9b5b12e-a121-4f28-9645-\
116058938200e97e"],
1161
1162Cell[BoxData[
1163 InterpretationBox[
1164  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1165   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1166   "\[InvisibleSpace]",
1167   RowBox[{"{",
1168    RowBox[{
1169     SuperscriptBox["W", "\[Dagger]"], ",",
1170     OverscriptBox["ta", "\<\"-\"\>"], ",", "nL3"}], "}"}],
1171   "\[InvisibleSpace]", "\<\".\"\>"}],
1172  SequenceForm[
1173  "Quantum number ", $CellContext`BL,
1174   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`tabar, \
1175$CellContext`nL3}, "."],
1176  Editable->False]], "Print",
1177 CellChangeTimes->{3.75258636072466*^9,
1178  3.752586599436551*^9},ExpressionUUID->"976d4c0f-64ce-4f29-ade8-\
1179f1cf8bf0589e"],
1180
1181Cell[BoxData[
1182 InterpretationBox[
1183  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1184   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1185   "\[InvisibleSpace]",
1186   RowBox[{"{",
1187    RowBox[{
1188     SuperscriptBox["W", "\[Dagger]"], ",",
1189     OverscriptBox["e", "\<\"-\"\>"], ",", "nH1"}], "}"}],
1190   "\[InvisibleSpace]", "\<\".\"\>"}],
1191  SequenceForm[
1192  "Quantum number ", $CellContext`LeptonNumber,
1193   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`ebar, \
1194$CellContext`nH1}, "."],
1195  Editable->False]], "Print",
1196 CellChangeTimes->{3.75258636072466*^9,
1197  3.7525865994399567`*^9},ExpressionUUID->"2564f5ce-cfeb-484e-bee4-\
11983f31c6c0b484"],
1199
1200Cell[BoxData[
1201 InterpretationBox[
1202  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1203   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1204   "\[InvisibleSpace]",
1205   RowBox[{"{",
1206    RowBox[{
1207     SuperscriptBox["W", "\[Dagger]"], ",",
1208     OverscriptBox["e", "\<\"-\"\>"], ",", "nH1"}], "}"}],
1209   "\[InvisibleSpace]", "\<\".\"\>"}],
1210  SequenceForm[
1211  "Quantum number ", $CellContext`BL,
1212   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`ebar, \
1213$CellContext`nH1}, "."],
1214  Editable->False]], "Print",
1215 CellChangeTimes->{3.75258636072466*^9,
1216  3.752586599443666*^9},ExpressionUUID->"0f930a8a-4549-4b57-8285-\
12179e48acac100e"],
1218
1219Cell[BoxData[
1220 InterpretationBox[
1221  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1222   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1223   "\[InvisibleSpace]",
1224   RowBox[{"{",
1225    RowBox[{
1226     SuperscriptBox["W", "\[Dagger]"], ",",
1227     OverscriptBox["mu", "\<\"-\"\>"], ",", "nH2"}], "}"}],
1228   "\[InvisibleSpace]", "\<\".\"\>"}],
1229  SequenceForm[
1230  "Quantum number ", $CellContext`LeptonNumber,
1231   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`mubar, \
1232$CellContext`nH2}, "."],
1233  Editable->False]], "Print",
1234 CellChangeTimes->{3.75258636072466*^9,
1235  3.7525865994472847`*^9},ExpressionUUID->"f712111b-1061-429f-b508-\
1236894ac52b2359"],
1237
1238Cell[BoxData[
1239 InterpretationBox[
1240  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1241   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1242   "\[InvisibleSpace]",
1243   RowBox[{"{",
1244    RowBox[{
1245     SuperscriptBox["W", "\[Dagger]"], ",",
1246     OverscriptBox["mu", "\<\"-\"\>"], ",", "nH2"}], "}"}],
1247   "\[InvisibleSpace]", "\<\".\"\>"}],
1248  SequenceForm[
1249  "Quantum number ", $CellContext`BL,
1250   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`mubar, \
1251$CellContext`nH2}, "."],
1252  Editable->False]], "Print",
1253 CellChangeTimes->{3.75258636072466*^9,
1254  3.752586599451284*^9},ExpressionUUID->"b19c2f81-c217-4d70-b4d9-\
12556be21564eb4b"],
1256
1257Cell[BoxData[
1258 InterpretationBox[
1259  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "LeptonNumber",
1260   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1261   "\[InvisibleSpace]",
1262   RowBox[{"{",
1263    RowBox[{
1264     SuperscriptBox["W", "\[Dagger]"], ",",
1265     OverscriptBox["ta", "\<\"-\"\>"], ",", "nH3"}], "}"}],
1266   "\[InvisibleSpace]", "\<\".\"\>"}],
1267  SequenceForm[
1268  "Quantum number ", $CellContext`LeptonNumber,
1269   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`tabar, \
1270$CellContext`nH3}, "."],
1271  Editable->False]], "Print",
1272 CellChangeTimes->{3.75258636072466*^9,
1273  3.7525865994547863`*^9},ExpressionUUID->"fd80db4e-116c-492a-98c3-\
12746d704ad3ea2f"],
1275
1276Cell[BoxData[
1277 InterpretationBox[
1278  RowBox[{"\<\"Quantum number \"\>", "\[InvisibleSpace]", "BL",
1279   "\[InvisibleSpace]", "\<\" not conserved in vertex \"\>",
1280   "\[InvisibleSpace]",
1281   RowBox[{"{",
1282    RowBox[{
1283     SuperscriptBox["W", "\[Dagger]"], ",",
1284     OverscriptBox["ta", "\<\"-\"\>"], ",", "nH3"}], "}"}],
1285   "\[InvisibleSpace]", "\<\".\"\>"}],
1286  SequenceForm[
1287  "Quantum number ", $CellContext`BL,
1288   " not conserved in vertex ", {$CellContext`Wbar, $CellContext`tabar, \
1289$CellContext`nH3}, "."],
1290  Editable->False]], "Print",
1291 CellChangeTimes->{3.75258636072466*^9,
1292  3.7525865994584837`*^9},ExpressionUUID->"d5c975a0-cea1-4402-a15e-\
1293a6a0eebfaa84"],
1294
1295Cell[BoxData[
1296 StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
1297decays: \"\>",
1298  StripOnInput->False,
1299  LineColor->RGBColor[1, 0.5, 0],
1300  FrontFaceColor->RGBColor[1, 0.5, 0],
1301  BackFaceColor->RGBColor[1, 0.5, 0],
1302  GraphicsColor->RGBColor[1, 0.5, 0],
1303  FontWeight->Bold,
1304  FontColor->RGBColor[1, 0.5, 0]]], "Print",
1305 CellChangeTimes->{3.75258636072466*^9,
1306  3.752586599461731*^9},ExpressionUUID->"523a2506-0943-4cb8-804e-\
13076c25208685b5"],
1308
1309Cell[BoxData[
1310 InterpretationBox[
1311  RowBox[{
1312   DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
1313    ImageSizeCache->{22., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1314   "\[InvisibleSpace]", "97"}],
1315  SequenceForm[
1316   Dynamic[PRIVATE`mycounter], " / ", 97],
1317  Editable->False]], "Print",
1318 CellChangeTimes->{3.75258636072466*^9,
1319  3.752586599464982*^9},ExpressionUUID->"2568e6b7-d03b-4ecc-8704-\
1320940f34c58181"],
1321
1322Cell[BoxData[
1323 InterpretationBox[
1324  RowBox[{"\<\"Squared matrix elent compute in \"\>", "\[InvisibleSpace]",
1325   "3.508705`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
1326  SequenceForm["Squared matrix elent compute in ", 3.508705, " seconds."],
1327  Editable->False]], "Print",
1328 CellChangeTimes->{3.75258636072466*^9,
1329  3.752586610855693*^9},ExpressionUUID->"8baf8529-e873-4717-be48-\
133097c1eae5ad4b"],
1331
1332Cell[BoxData[
1333 InterpretationBox[
1334  RowBox[{
1335   DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
1336    ImageSizeCache->{22., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1337   "\[InvisibleSpace]", "118"}],
1338  SequenceForm[
1339   Dynamic[PRIVATE`mycounter], " / ", 118],
1340  Editable->False]], "Print",
1341 CellChangeTimes->{3.75258636072466*^9,
1342  3.752586610860303*^9},ExpressionUUID->"52f6344c-5468-4522-848d-\
1343f02c8f5fbe96"],
1344
1345Cell[BoxData[
1346 InterpretationBox[
1347  RowBox[{"\<\"Decay widths computed in \"\>", "\[InvisibleSpace]",
1348   "1.669705`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
1349  SequenceForm["Decay widths computed in ", 1.669705, " seconds."],
1350  Editable->False]], "Print",
1351 CellChangeTimes->{3.75258636072466*^9,
1352  3.752586613208582*^9},ExpressionUUID->"8f52f277-8456-4aa1-910a-\
1353e248cfbd7f0a"],
1354
1355Cell[BoxData["\<\"Preparing Python output.\"\>"], "Print",
1356 CellChangeTimes->{3.75258636072466*^9,
1357  3.752586613212161*^9},ExpressionUUID->"4a17f35c-13fc-4bd2-974d-\
1358d9ae020f2f1f"],
1359
1360Cell[BoxData["\<\"    - Splitting vertices into building blocks.\"\>"], \
1361"Print",
1362 CellChangeTimes->{3.75258636072466*^9,
1363  3.752586613374797*^9},ExpressionUUID->"2e55ccd0-89f4-4238-8223-\
13641c114dea3b77"],
1365
1366Cell[BoxData[
1367 InterpretationBox[
1368  RowBox[{"\<\"Splitting of vertices distributed over \"\>",
1369   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
1370  SequenceForm["Splitting of vertices distributed over ", 4, " kernels."],
1371  Editable->False]], "Print",
1372 CellChangeTimes->{3.75258636072466*^9,
1373  3.752586613409704*^9},ExpressionUUID->"5a9e2d65-0536-4c67-9927-\
13742335dfdea2ad"],
1375
1376Cell[BoxData[
1377 InterpretationBox[
1378  RowBox[{"\<\"    - Optimizing: \"\>", "\[InvisibleSpace]",
1379   DynamicBox[ToBoxes[PRIVATE`PY$SplitVertexCounter, StandardForm],
1380    ImageSizeCache->{22., {0., 8.}}], "\[InvisibleSpace]", "\<\"/\"\>",
1381   "\[InvisibleSpace]", "245", "\[InvisibleSpace]", "\<\" .\"\>"}],
1382  SequenceForm["    - Optimizing: ",
1383   Dynamic[PRIVATE`PY$SplitVertexCounter], "/", 245, " ."],
1384  Editable->False]], "Print",
1385 CellChangeTimes->{3.75258636072466*^9,
1386  3.752586615428193*^9},ExpressionUUID->"8e51fc95-5193-4167-b72c-\
138702627ef5e343"],
1388
1389Cell[BoxData["\<\"    - Writing files.\"\>"], "Print",
1390 CellChangeTimes->{3.75258636072466*^9,
1391  3.7525866156409893`*^9},ExpressionUUID->"70462fac-bb42-4ae7-b9a3-\
1392f65e57b2b405"],
1393
1394Cell[BoxData["\<\"Done!\"\>"], "Print",
1395 CellChangeTimes->{3.75258636072466*^9,
1396  3.75258661609581*^9},ExpressionUUID->"189bcef4-4111-4439-9d3a-699293df722f"]
1397}, Open  ]]
1398}, Open  ]]
1399}, Open  ]]
1400},
1401WindowSize->{808, 591},
1402WindowMargins->{{Automatic, 91}, {142, Automatic}},
1403FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
140410, 2017)",
1405StyleDefinitions->"Default.nb"
1406]
1407(* End of Notebook Content *)
1408
1409(* Internal cache information *)
1410(*CellTagsOutline
1411CellTagsIndex->{}
1412*)
1413(*CellTagsIndex
1414CellTagsIndex->{}
1415*)
1416(*NotebookFileOutline
1417Notebook[{
1418Cell[CellGroupData[{
1419Cell[580, 22, 157, 3, 67, "Section",ExpressionUUID->"845d24d6-6818-4012-b448-940e823be5cc"],
1420Cell[CellGroupData[{
1421Cell[762, 29, 389, 9, 52, "Input",ExpressionUUID->"de8e714b-86fc-4414-9085-2a625ed0e69c"],
1422Cell[1154, 40, 788, 11, 34, "Output",ExpressionUUID->"794c9b66-4f18-4e24-85d4-17ee25231636"],
1423Cell[CellGroupData[{
1424Cell[1967, 55, 244, 4, 24, "Print",ExpressionUUID->"bdf50bb7-6a35-4c1e-994e-c48aa4ed0302"],
1425Cell[2214, 61, 519, 11, 24, "Print",ExpressionUUID->"2d4986cf-b87f-47bf-9b97-0252241b6549"],
1426Cell[2736, 74, 296, 5, 24, "Print",ExpressionUUID->"c036620c-7488-47f5-8b10-3c36a24fb920"],
1427Cell[3035, 81, 232, 4, 24, "Print",ExpressionUUID->"9d75119e-ce86-4013-95d6-a681153e6a4d"],
1428Cell[3270, 87, 241, 4, 24, "Print",ExpressionUUID->"06a289e5-fdea-4455-a21a-7caa4ccc547b"],
1429Cell[3514, 93, 295, 5, 24, "Print",ExpressionUUID->"fd744190-0fff-4211-a9af-ac86a9e6873b"],
1430Cell[3812, 100, 293, 5, 24, "Print",ExpressionUUID->"13e5d5e9-91e2-4e62-8b17-a3490d679557"],
1431Cell[4108, 107, 227, 3, 24, "Print",ExpressionUUID->"0dfd5699-27b5-44fa-9d94-aef593b0edae"],
1432Cell[4338, 112, 260, 4, 24, "Print",ExpressionUUID->"09c71fbf-ff28-4104-9a98-ada1697559a0"],
1433Cell[4601, 118, 230, 4, 24, "Print",ExpressionUUID->"bb780f03-5fdb-4642-a5ac-3b2eb2cac908"],
1434Cell[4834, 124, 297, 5, 24, "Print",ExpressionUUID->"5e346848-af13-4d5d-874e-aa86e0071a20"]
1435}, Open  ]]
1436}, Open  ]],
1437Cell[5158, 133, 385, 9, 30, "Input",ExpressionUUID->"9857198b-af32-4692-9afe-2f056b604eed"],
1438Cell[CellGroupData[{
1439Cell[5568, 146, 631, 10, 30, "Input",ExpressionUUID->"727fcf80-7184-4d30-8321-898e0adff3c3"],
1440Cell[CellGroupData[{
1441Cell[6224, 160, 222, 3, 24, "Print",ExpressionUUID->"3cb7ef64-a0ad-48d6-aa7f-c467f40ca4ed"],
1442Cell[6449, 165, 189, 3, 24, "Print",ExpressionUUID->"0b9fe172-eaae-46fd-9660-beaac82adc64"],
1443Cell[6641, 170, 334, 7, 24, "Print",ExpressionUUID->"951211cc-7b8e-46e0-952e-7713439b9cbd"],
1444Cell[6978, 179, 213, 3, 24, "Print",ExpressionUUID->"e2c3383a-79c0-4218-9cb1-df23ed83f6ba"],
1445Cell[7194, 184, 230, 4, 24, "Print",ExpressionUUID->"f53a7322-16ab-4b32-bfff-25f3cd920c57"],
1446Cell[7427, 190, 182, 3, 24, "Print",ExpressionUUID->"883318cc-ed59-4fc2-a515-4c769f6032cf"],
1447Cell[7612, 195, 212, 3, 24, "Print",ExpressionUUID->"1638de5a-c3a1-4328-94bd-3bad38dbb4ce"],
1448Cell[7827, 200, 215, 3, 24, "Print",ExpressionUUID->"5fc4a8ba-81a0-4c32-b362-96388c217d5b"],
1449Cell[8045, 205, 215, 3, 24, "Print",ExpressionUUID->"6c424d6c-6a36-4974-afc6-729cbcc1053c"],
1450Cell[8263, 210, 376, 8, 44, "Print",ExpressionUUID->"9b611f16-afc7-4b66-82a7-5039439bb98b"]
1451}, Open  ]]
1452}, Open  ]],
1453Cell[CellGroupData[{
1454Cell[8688, 224, 314, 7, 30, "Input",ExpressionUUID->"4b8739bd-5bf0-49ad-97a5-3d9fa7c99579"],
1455Cell[CellGroupData[{
1456Cell[9027, 235, 720, 14, 24, "Print",ExpressionUUID->"3782e8d9-18e8-4691-b2b1-025e874f84eb"],
1457Cell[9750, 251, 716, 14, 24, "Print",ExpressionUUID->"f8713eb4-cfe3-4e1a-9f3d-1e9d219a4f47"],
1458Cell[10469, 267, 249, 4, 24, "Print",ExpressionUUID->"c22c666c-2efa-425a-8f18-8fc27f0b862d"]
1459}, Open  ]]
1460}, Open  ]]
1461}, Open  ]],
1462Cell[CellGroupData[{
1463Cell[10779, 278, 184, 3, 67, "Section",ExpressionUUID->"cff68957-367f-4f2f-98ba-7c7553e892a7"],
1464Cell[CellGroupData[{
1465Cell[10988, 285, 191, 4, 30, "Input",ExpressionUUID->"60393aa8-ea16-488d-bb1d-e5906c2ae5c0"],
1466Cell[CellGroupData[{
1467Cell[11204, 293, 206, 4, 24, "Print",ExpressionUUID->"3bb558fc-970b-4253-b941-191ad5e471b0"],
1468Cell[11413, 299, 429, 11, 24, "Print",ExpressionUUID->"1a0ffd90-4878-448f-99cb-2e127367d975"],
1469Cell[11845, 312, 184, 3, 24, "Print",ExpressionUUID->"46c8ba84-1571-45f6-9ef5-31aec0601de9"],
1470Cell[12032, 317, 366, 8, 24, "Print",ExpressionUUID->"ff3885d6-45c9-4cd2-8b7e-bd652c4749a0"],
1471Cell[12401, 327, 217, 4, 24, "Print",ExpressionUUID->"e4649fc0-9fc7-47f5-94a4-6933fbcb7233"],
1472Cell[12621, 333, 704, 15, 24, "Print",ExpressionUUID->"2949e7c6-3976-4ab7-b881-a1f9604f2c48"],
1473Cell[13328, 350, 301, 7, 24, "Print",ExpressionUUID->"17e861c0-d047-4d9d-a90c-0791e389f38a"],
1474Cell[13632, 359, 655, 14, 24, "Print",ExpressionUUID->"77b0f24e-1c2f-427a-aee7-dd1e23fc4d3a"],
1475Cell[14290, 375, 198, 3, 24, "Print",ExpressionUUID->"eeb0e259-0af0-4be1-a034-664a1b102be5"]
1476}, Open  ]],
1477Cell[14503, 381, 339, 8, 24, "Message",ExpressionUUID->"1da200ee-4d69-4829-96d4-0b1dac4ecf6e"],
1478Cell[14845, 391, 687, 17, 33, "Print",ExpressionUUID->"e68f31e0-a763-49d5-8c24-97dd33d5e3ac"],
1479Cell[15535, 410, 339, 8, 24, "Message",ExpressionUUID->"87ff761f-c457-473c-af0f-697e6b3e86e8"],
1480Cell[15877, 420, 667, 17, 33, "Print",ExpressionUUID->"9d082fe5-5218-4862-a23d-9712f5a06e02"],
1481Cell[16547, 439, 339, 8, 24, "Message",ExpressionUUID->"f4430361-1e8f-42e1-96a3-424e1ee0447a"],
1482Cell[16889, 449, 421, 9, 24, "Message",ExpressionUUID->"2507d153-bcb5-48cd-a1d4-41e9df120726"],
1483Cell[CellGroupData[{
1484Cell[17335, 462, 689, 17, 33, "Print",ExpressionUUID->"de86fac1-9744-443c-a61e-4f08151886be"],
1485Cell[18027, 481, 669, 17, 33, "Print",ExpressionUUID->"5144fe76-a0bd-44d4-a40d-9c392d19483b"],
1486Cell[18699, 500, 689, 17, 35, "Print",ExpressionUUID->"21c61ac1-18f6-434e-8870-aa60fce68f10"],
1487Cell[19391, 519, 669, 17, 35, "Print",ExpressionUUID->"df2c0b22-1819-4511-8741-59332e64876c"],
1488Cell[20063, 538, 687, 17, 33, "Print",ExpressionUUID->"8d0c13f0-96f8-4012-8df8-27e0c217a29d"],
1489Cell[20753, 557, 667, 17, 33, "Print",ExpressionUUID->"f6572706-cc54-4c37-b142-6ba70a626fc9"],
1490Cell[21423, 576, 691, 17, 33, "Print",ExpressionUUID->"7a9689ba-1b13-491f-a9e7-2ef1ba870a82"],
1491Cell[22117, 595, 671, 17, 33, "Print",ExpressionUUID->"2890cb22-e8cf-4b01-91ad-0538698fbf56"],
1492Cell[22791, 614, 689, 17, 35, "Print",ExpressionUUID->"fb9faad8-ac78-4511-834e-a439dedadb3e"],
1493Cell[23483, 633, 665, 16, 35, "Print",ExpressionUUID->"c91772ae-833a-4695-98b8-273f6de2370b"],
1494Cell[24151, 651, 646, 15, 35, "Print",ExpressionUUID->"06294c2e-1e77-4892-8b2f-f7b3d054ac0f"],
1495Cell[24800, 668, 629, 16, 35, "Print",ExpressionUUID->"10b27614-b8ac-4f11-a577-75a98dfdaa16"],
1496Cell[25432, 686, 653, 16, 35, "Print",ExpressionUUID->"bc46883b-d5b6-45ad-847a-971a72c01589"],
1497Cell[26088, 704, 631, 16, 35, "Print",ExpressionUUID->"0f6dfc81-9c18-4558-ade1-fed3f68536d9"],
1498Cell[26722, 722, 651, 16, 35, "Print",ExpressionUUID->"22dae856-a9ba-403e-849d-5ed30adc66ab"],
1499Cell[27376, 740, 631, 16, 35, "Print",ExpressionUUID->"d73af4a6-81bb-4637-8615-40a8b92ad0d4"],
1500Cell[28010, 758, 651, 16, 35, "Print",ExpressionUUID->"b9a936a1-7533-4e5f-af83-110fef462596"],
1501Cell[28664, 776, 629, 16, 35, "Print",ExpressionUUID->"e5c18dd2-013e-4303-b255-0840e3a10485"],
1502Cell[29296, 794, 651, 16, 35, "Print",ExpressionUUID->"e95ec029-349e-4558-a926-22d6fcd08cda"],
1503Cell[29950, 812, 628, 15, 35, "Print",ExpressionUUID->"a6bcacd5-9e70-4a22-84d7-66c1b232283f"],
1504Cell[30581, 829, 651, 16, 35, "Print",ExpressionUUID->"8fc0994b-01a5-4326-9b68-b4af5054442b"],
1505Cell[31235, 847, 631, 16, 35, "Print",ExpressionUUID->"59ce06cc-2259-421a-82f9-88b4c7a66555"],
1506Cell[31869, 865, 641, 15, 35, "Print",ExpressionUUID->"ecc32ab0-e837-43a7-b78a-4fa07b318235"],
1507Cell[32513, 882, 616, 14, 35, "Print",ExpressionUUID->"2a55a825-2f47-4511-b9d1-41bd7fd98a14"],
1508Cell[33132, 898, 643, 15, 35, "Print",ExpressionUUID->"52d96e5d-e023-4522-9277-557e61deebef"],
1509Cell[33778, 915, 623, 15, 35, "Print",ExpressionUUID->"4896e1bb-a29e-4f68-81aa-de230cb42ea3"],
1510Cell[34404, 932, 644, 15, 35, "Print",ExpressionUUID->"8343085c-307a-4f3d-ac7e-ff6c5d3b9cf7"],
1511Cell[35051, 949, 621, 14, 35, "Print",ExpressionUUID->"5034b376-de8d-48db-b248-b4a3edd8bd92"],
1512Cell[35675, 965, 636, 14, 35, "Print",ExpressionUUID->"d84eda65-f6b6-41be-9784-e855ff82d7f0"],
1513Cell[36314, 981, 621, 15, 35, "Print",ExpressionUUID->"f7b17aaa-5000-458d-abac-2c2056a84b95"],
1514Cell[36938, 998, 643, 15, 35, "Print",ExpressionUUID->"a4f49c1e-efd3-49be-a935-98b4acb9d5e5"],
1515Cell[37584, 1015, 623, 15, 35, "Print",ExpressionUUID->"8d6d8a6b-ea78-4213-93be-37de394d49be"],
1516Cell[38210, 1032, 644, 15, 35, "Print",ExpressionUUID->"406570ec-68ec-468c-a56e-08b9a22beedf"],
1517Cell[38857, 1049, 624, 15, 35, "Print",ExpressionUUID->"2ca0919f-8f34-48c5-b865-4e134fa01c12"],
1518Cell[39484, 1066, 687, 17, 33, "Print",ExpressionUUID->"04f97486-3bbb-494d-98f5-f304a6892984"],
1519Cell[40174, 1085, 665, 17, 33, "Print",ExpressionUUID->"801cc69c-9d6b-4b55-a0a6-787fdd86df08"],
1520Cell[40842, 1104, 687, 17, 33, "Print",ExpressionUUID->"c1a2c9e9-821a-4c45-afd6-9e6ac36a5d15"],
1521Cell[41532, 1123, 667, 17, 33, "Print",ExpressionUUID->"75b8b6ed-b429-40f2-a752-8a7b65023c2b"],
1522Cell[42202, 1142, 687, 17, 35, "Print",ExpressionUUID->"b9b5b12e-a121-4f28-9645-58938200e97e"],
1523Cell[42892, 1161, 667, 17, 35, "Print",ExpressionUUID->"976d4c0f-64ce-4f29-ade8-f1cf8bf0589e"],
1524Cell[43562, 1180, 687, 17, 33, "Print",ExpressionUUID->"2564f5ce-cfeb-484e-bee4-3f31c6c0b484"],
1525Cell[44252, 1199, 665, 17, 33, "Print",ExpressionUUID->"0f930a8a-4549-4b57-8285-9e48acac100e"],
1526Cell[44920, 1218, 689, 17, 33, "Print",ExpressionUUID->"f712111b-1061-429f-b508-894ac52b2359"],
1527Cell[45612, 1237, 667, 17, 33, "Print",ExpressionUUID->"b19c2f81-c217-4d70-b4d9-6be21564eb4b"],
1528Cell[46282, 1256, 689, 17, 35, "Print",ExpressionUUID->"fd80db4e-116c-492a-98c3-6d704ad3ea2f"],
1529Cell[46974, 1275, 669, 17, 35, "Print",ExpressionUUID->"d5c975a0-cea1-4402-a15e-a6a0eebfaa84"],
1530Cell[47646, 1294, 465, 12, 24, "Print",ExpressionUUID->"523a2506-0943-4cb8-804e-6c25208685b5"],
1531Cell[48114, 1308, 419, 11, 24, "Print",ExpressionUUID->"2568e6b7-d03b-4ecc-8704-940f34c58181"],
1532Cell[48536, 1321, 397, 8, 24, "Print",ExpressionUUID->"8baf8529-e873-4717-be48-97c1eae5ad4b"],
1533Cell[48936, 1331, 421, 11, 24, "Print",ExpressionUUID->"52f6344c-5468-4522-848d-f02c8f5fbe96"],
1534Cell[49360, 1344, 383, 8, 24, "Print",ExpressionUUID->"8f52f277-8456-4aa1-910a-e248cfbd7f0a"],
1535Cell[49746, 1354, 181, 3, 24, "Print",ExpressionUUID->"4a17f35c-13fc-4bd2-974d-d9ae020f2f1f"],
1536Cell[49930, 1359, 205, 4, 24, "Print",ExpressionUUID->"2e55ccd0-89f4-4238-8223-1c114dea3b77"],
1537Cell[50138, 1365, 396, 8, 24, "Print",ExpressionUUID->"5a9e2d65-0536-4c67-9927-2335dfdea2ad"],
1538Cell[50537, 1375, 555, 11, 24, "Print",ExpressionUUID->"8e51fc95-5193-4167-b72c-02627ef5e343"],
1539Cell[51095, 1388, 179, 3, 24, "Print",ExpressionUUID->"70462fac-bb42-4ae7-b9a3-f65e57b2b405"],
1540Cell[51277, 1393, 159, 2, 24, "Print",ExpressionUUID->"189bcef4-4111-4439-9d3a-699293df722f"]
1541}, Open  ]]
1542}, Open  ]]
1543}, Open  ]]
1544}
1545]
1546*)
1547