TopFCNC: TopEFTFCNC.fr

File TopEFTFCNC.fr, 24.4 KB (added by degrande, 22 months ago)
Line 
1(***************************************************************************************************************)
2(******                       This is the FeynRules mod-file for the Top effective theory                 ******)
3(******                                                                                                   ******)
4(******     Authors: C. Degrande                                                                          ******)
5(******                                                                                                   ******)
6(***************************************************************************************************************)
7
8M$ModelName = "TopEFTFCNC";
9
10
11M$Information = {Authors -> {"C. Degrande"},
12             Version -> "1",
13             Date -> "11. 04. 2013",
14             Institutions -> {"UIUC"},
15             Emails -> {"cdegrand@illinois.edu"},
16             URLs -> "http://feynrules.phys.ucl.ac.be"};
17
18FeynmanGauge = True;
19
20
21M$InteractionOrderHierarchy = {
22{QCD,2},
23{QED,4},
24{NP,1}
25}
26
27M$InteractionOrderLimit = {
28{NP,2}
29}
30
31
32
33(****************  Parameters *************)
34
35M$Parameters = {
36
37  (* External parameters *)
38
39  Lambda== {
40        ParameterType -> External,
41        ParameterName -> Lambda,
42        BlockName -> DIM6,
43          InteractionOrder -> {NP,-1},
44        Value -> 1000,
45          TeX -> \[CapitalLambda],
46        Description -> "Scale of the new physics"},
47       
48  RCtphi== {
49        ParameterType -> External,
50        ParameterName -> RCtphi,
51        BlockName -> DIM6,
52          InteractionOrder -> {QED,3},
53        Value -> 1,
54          TeX -> Subscript[RC,t\[Phi]],
55        Description -> "Real part of the coefficient of Otphi"},
56
57  ICtphi== {
58        ParameterType -> External,
59        ParameterName -> ICtphi,
60        BlockName -> DIM6,
61          InteractionOrder -> {QED,3},
62        Value -> 1,
63          TeX -> Subscript[IC,t\[Phi]],
64        Description -> "Imaginary part of the coefficient of Otphi"},
65       
66  RCtG== {
67        ParameterType -> External,
68        ParameterName -> RCtG,
69        BlockName -> DIM6,
70          InteractionOrder -> {QED,1},
71        Value -> 1,
72          TeX -> Subscript[RC,tG],
73        Description -> "Real part of the coefficient of OtG"},
74
75  ICtG== {
76        ParameterType -> External,
77        ParameterName -> ICtG,
78        BlockName -> DIM6,
79          InteractionOrder -> {QED,1},
80        Value -> 1,
81          TeX -> Subscript[IC,tG],
82        Description -> "Imaginary part of the coefficient of OtG"},
83       
84  RCtW== {
85        ParameterType -> External,
86        ParameterName -> RCtW,
87        BlockName -> DIM6,
88          InteractionOrder -> {QED,1},
89        Value -> 1,
90          TeX -> Subscript[RC,tW],
91        Description -> "Real part of the coefficient of OtW"},
92
93  ICtW== {
94        ParameterType -> External,
95        ParameterName -> ICtW,
96        BlockName -> DIM6,
97          InteractionOrder -> {QED,1},
98        Value -> 1,
99          TeX -> Subscript[IC,tW],
100        Description -> "Imaginary part of the coefficient of OtW"},
101       
102  RCtB== {
103        ParameterType -> External,
104        ParameterName -> RCtB,
105        BlockName -> DIM6,
106          InteractionOrder -> {QED,1},
107        Value -> 1,
108          TeX -> Subscript[RC,tB],
109        Description -> "Real part of the coefficient of OtB"},
110
111  ICtB== {
112        ParameterType -> External,
113        ParameterName -> ICtB,
114        BlockName -> DIM6,
115          InteractionOrder -> {QED,1},
116        Value -> 1,
117          TeX -> Subscript[IC,tB],
118        Description -> "Imaginary part of the coefficient of OtB"},
119
120(* with the up*)
121
122  RCuphi== {
123        ParameterType -> External,
124        ParameterName -> RCuphi,
125        BlockName -> DIM6,
126          InteractionOrder -> {QED,3},
127        Value -> 1,
128          TeX -> Subscript[RC,u\[Phi]],
129        Description -> "Real part of the coefficient of Ouphi"},
130
131  ICuphi== {
132        ParameterType -> External,
133        ParameterName -> ICuphi,
134        BlockName -> DIM6,
135          InteractionOrder -> {QED,3},
136        Value -> 1,
137          TeX -> Subscript[IC,u\[Phi]],
138        Description -> "Imaginary part of the coefficient of Ouphi"},
139       
140  RCuG== {
141        ParameterType -> External,
142        ParameterName -> RCuG,
143        BlockName -> DIM6,
144          InteractionOrder -> {QED,1},
145        Value -> 1,
146          TeX -> Subscript[RC,uG],
147        Description -> "Real part of the coefficient of OuG"},
148
149  ICuG== {
150        ParameterType -> External,
151        ParameterName -> ICuG,
152        BlockName -> DIM6,
153          InteractionOrder -> {QED,1},
154        Value -> 1,
155          TeX -> Subscript[IC,uG],
156        Description -> "Imaginary part of the coefficienu of OuG"},
157       
158  RCuW== {
159        ParameterType -> External,
160        ParameterName -> RCuW,
161        BlockName -> DIM6,
162          InteractionOrder -> {QED,1},
163        Value -> 1,
164          TeX -> Subscript[RC,uW],
165        Description -> "Real part of the coefficient of OuW"},
166
167  ICuW== {
168        ParameterType -> External,
169        ParameterName -> ICuW,
170        BlockName -> DIM6,
171          InteractionOrder -> {QED,1},
172        Value -> 1,
173          TeX -> Subscript[IC,uW],
174        Description -> "Imaginary part of the coefficient of OuW"},
175       
176  RCuB== {
177        ParameterType -> External,
178        ParameterName -> RCuB,
179        BlockName -> DIM6,
180          InteractionOrder -> {QED,1},
181        Value -> 1,
182          TeX -> Subscript[RC,uB],
183        Description -> "Real part of the coefficient of OuB"},
184
185  ICuB== {
186        ParameterType -> External,
187        ParameterName -> ICuB,
188        BlockName -> DIM6,
189          InteractionOrder -> {QED,1},
190        Value -> 1,
191          TeX -> Subscript[IC,uB],
192        Description -> "Imaginary part of the coefficient of OuB"},
193
194(* currents 1-3 *)
195       
196  RC1utR== {
197        ParameterType -> External,
198        ParameterName -> RC1utR,
199        BlockName -> DIM6,
200          InteractionOrder -> {QED,1},
201        Value -> 1,
202          TeX -> Subsuperscript[RC,utR,1],
203        Description -> "Real part of the coefficient of O1utR"},
204
205  IC1utR== {
206        ParameterType -> External,
207        ParameterName -> IC1utR,
208        BlockName -> DIM6,
209          InteractionOrder -> {QED,1},
210        Value -> 1,
211          TeX -> Subsuperscript[IC,utR,1],
212        Description -> "Imaginary part of the coefficient of O1utR"},
213       
214  RC1utL== {
215        ParameterType -> External,
216        ParameterName -> RC1utL,
217        BlockName -> DIM6,
218          InteractionOrder -> {QED,1},
219        Value -> 1,
220          TeX -> Subsuperscript[RC,utL,1],
221        Description -> "Real part of the coefficient of O1utL"},
222
223  IC1utL== {
224        ParameterType -> External,
225        ParameterName -> IC1utL,
226        BlockName -> DIM6,
227          InteractionOrder -> {QED,1},
228        Value -> 1,
229          TeX -> Subsuperscript[IC,utL,1],
230        Description -> "Imaginary part of the coefficient of O1utL"},
231       
232  RC3utL== {
233        ParameterType -> External,
234        ParameterName -> RC3utL,
235        BlockName -> DIM6,
236          InteractionOrder -> {QED,1},
237        Value -> 1,
238          TeX -> Subsuperscript[RC,utL,3],
239        Description -> "Real part of the coefficient of O3utL"},
240
241  IC3utL== {
242        ParameterType -> External,
243        ParameterName -> IC3utL,
244        BlockName -> DIM6,
245          InteractionOrder -> {QED,1},
246        Value -> 1,
247          TeX -> Subsuperscript[IC,utL,3],
248        Description -> "Imaginary part of the coefficient of O3utL"},
249
250(* with the charm*)
251       
252  RCtcphi== {
253        ParameterType -> External,
254        ParameterName -> RCtcphi,
255        BlockName -> DIM6,
256          InteractionOrder -> {QED,3},
257        Value -> 1,
258          TeX -> Subscript[RC,tc\[Phi]],
259        Description -> "Real part of the coefficient of Otcphi"},
260
261  ICtcphi== {
262        ParameterType -> External,
263        ParameterName -> ICtcphi,
264        BlockName -> DIM6,
265          InteractionOrder -> {QED,3},
266        Value -> 1,
267          TeX -> Subscript[IC,tc\[Phi]],
268        Description -> "Imaginary part of the coefficient of Otcphi"},
269       
270  RCtcG== {
271        ParameterType -> External,
272        ParameterName -> RCtcG,
273        BlockName -> DIM6,
274          InteractionOrder -> {QED,1},
275        Value -> 1,
276          TeX -> Subscript[RC,tcG],
277        Description -> "Real part of the coefficient of OtcG"},
278
279  ICtcG== {
280        ParameterType -> External,
281        ParameterName -> ICtcG,
282        BlockName -> DIM6,
283          InteractionOrder -> {QED,1},
284        Value -> 1,
285          TeX -> Subscript[IC,tcG],
286        Description -> "Imaginary part of the coefficient of OtcG"},
287       
288  RCtcW== {
289        ParameterType -> External,
290        ParameterName -> RCtcW,
291        BlockName -> DIM6,
292          InteractionOrder -> {QED,1},
293        Value -> 1,
294          TeX -> Subscript[RC,tcW],
295        Description -> "Real part of the coefficient of OtcW"},
296
297  ICtcW== {
298        ParameterType -> External,
299        ParameterName -> ICtcW,
300        BlockName -> DIM6,
301          InteractionOrder -> {QED,1},
302        Value -> 1,
303          TeX -> Subscript[IC,tcW],
304        Description -> "Imaginary part of the coefficient of OtcW"},
305       
306  RCtcB== {
307        ParameterType -> External,
308        ParameterName -> RCtcB,
309        BlockName -> DIM6,
310          InteractionOrder -> {QED,1},
311        Value -> 1,
312          TeX -> Subscript[RC,tcB],
313        Description -> "Real part of the coefficient of OtcB"},
314
315  ICtcB== {
316        ParameterType -> External,
317        ParameterName -> ICtcB,
318        BlockName -> DIM6,
319          InteractionOrder -> {QED,1},
320        Value -> 1,
321          TeX -> Subscript[IC,tcB],
322        Description -> "Imaginary part of the coefficient of OtcB"},
323
324(* with the top-charm*)
325       
326  RCctphi== {
327        ParameterType -> External,
328        ParameterName -> RCctphi,
329        BlockName -> DIM6,
330          InteractionOrder -> {QED,3},
331        Value -> 1,
332          TeX -> Subscript[RC,ct\[Phi]],
333        Description -> "Real part of the coefficient of Octphi"},
334
335  ICctphi== {
336        ParameterType -> External,
337        ParameterName -> ICctphi,
338        BlockName -> DIM6,
339          InteractionOrder -> {QED,3},
340        Value -> 1,
341          TeX -> Subscript[IC,ct\[Phi]],
342        Description -> "Imaginary part of the coefficient of Octphi"},
343       
344  RCctG== {
345        ParameterType -> External,
346        ParameterName -> RCctG,
347        BlockName -> DIM6,
348          InteractionOrder -> {QED,1},
349        Value -> 1,
350          TeX -> Subscript[RC,ctG],
351        Description -> "Real part of the coefficient of OctG"},
352
353  ICctG== {
354        ParameterType -> External,
355        ParameterName -> ICctG,
356        BlockName -> DIM6,
357          InteractionOrder -> {QED,1},
358        Value -> 1,
359          TeX -> Subscript[IC,ctG],
360        Description -> "Imaginary part of the coefficient of OctG"},
361       
362  RCctW== {
363        ParameterType -> External,
364        ParameterName -> RCctW,
365        BlockName -> DIM6,
366          InteractionOrder -> {QED,1},
367        Value -> 1,
368          TeX -> Subscript[RC,ctW],
369        Description -> "Real part of the coefficient of OctW"},
370
371  ICctW== {
372        ParameterType -> External,
373        ParameterName -> ICctW,
374        BlockName -> DIM6,
375          InteractionOrder -> {QED,1},
376        Value -> 1,
377          TeX -> Subscript[IC,ctW],
378        Description -> "Imaginary part of the coefficient of OctW"},
379       
380  RCctB== {
381        ParameterType -> External,
382        ParameterName -> RCctB,
383        BlockName -> DIM6,
384          InteractionOrder -> {QED,1},
385        Value -> 1,
386          TeX -> Subscript[RC,ctB],
387        Description -> "Real part of the coefficient of OctB"},
388
389  ICctB== {
390        ParameterType -> External,
391        ParameterName -> ICctB,
392        BlockName -> DIM6,
393          InteractionOrder -> {QED,1},
394        Value -> 1,
395          TeX -> Subscript[IC,ctB],
396        Description -> "Imaginary part of the coefficient of OtcB"},
397
398(* currents 2-3 *)
399       
400  RC1ctR== {
401        ParameterType -> External,
402        ParameterName -> RC1ctR,
403        BlockName -> DIM6,
404          InteractionOrder -> {QED,1},
405        Value -> 1,
406          TeX -> Subsuperscript[RC,ctR,1],
407        Description -> "Real part of the coefficient of O1ctR"},
408
409  IC1ctR== {
410        ParameterType -> External,
411        ParameterName -> IC1ctR,
412        BlockName -> DIM6,
413          InteractionOrder -> {QED,1},
414        Value -> 1,
415          TeX -> Subsuperscript[IC,ctR,1],
416        Description -> "Imaginary part of the coefficient of O1ctR"},
417       
418  RC1ctL== {
419        ParameterType -> External,
420        ParameterName -> RC1ctL,
421        BlockName -> DIM6,
422          InteractionOrder -> {QED,1},
423        Value -> 1,
424          TeX -> Subsuperscript[RC,ctL,1],
425        Description -> "Real part of the coefficient of O1ctL"},
426
427  IC1ctL== {
428        ParameterType -> External,
429        ParameterName -> IC1ctL,
430        BlockName -> DIM6,
431          InteractionOrder -> {QED,1},
432        Value -> 1,
433          TeX -> Subsuperscript[IC,ctL,1],
434        Description -> "Imaginary part of the coefficient of O1ctL"},
435       
436  RC3ctL== {
437        ParameterType -> External,
438        ParameterName -> RC3ctL,
439        BlockName -> DIM6,
440          InteractionOrder -> {QED,1},
441        Value -> 1,
442          TeX -> Subsuperscript[RC,ctL,3],
443        Description -> "Real part of the coefficient of O3ctL"},
444
445  IC3ctL== {
446        ParameterType -> External,
447        ParameterName -> IC3ctL,
448        BlockName -> DIM6,
449          InteractionOrder -> {QED,1},
450        Value -> 1,
451          TeX -> Subsuperscript[IC,ctL,3],
452        Description -> "Imaginary part of the coefficient of O3utL"},
453
454(* Internal parameters *)
455
456  Ctphi== {
457        ParameterType -> Internal,
458          ComplexParameter->True,
459          InteractionOrder -> {QED,3},
460        ParameterName -> Ctphi,
461        Value -> RCtphi + I ICtphi,
462          TeX -> Subscript[C,t\[Phi]],
463        Description -> "coefficient of Otphi"},   
464
465  CtG== {
466        ParameterType -> Internal,
467          ComplexParameter->True,
468          InteractionOrder -> {QED,1},
469        ParameterName -> CtG,
470        Value -> RCtG + I ICtG,
471          TeX -> Subscript[C,tG],
472        Description -> "coefficient of OtG"},   
473
474  CtW== {
475        ParameterType -> Internal,
476          ComplexParameter->True,
477          InteractionOrder -> {QED,1},
478        ParameterName -> CtW,
479        Value -> RCtW + I ICtW,
480          TeX -> Subscript[C,tW],
481        Description -> "coefficient of OtW"},   
482
483  CtB== {
484        ParameterType -> Internal,
485          ComplexParameter->True,
486          InteractionOrder -> {QED,1},
487        ParameterName -> CtB,
488        Value -> RCtB + I ICtB,
489          TeX -> Subscript[C,tB],
490        Description -> "coefficient of OtB"},
491
492  Cuphi== {
493        ParameterType -> Internal,
494          ComplexParameter->True,
495          InteractionOrder -> {QED,3},
496        ParameterName -> Cuphi,
497        Value -> RCuphi + I ICuphi,
498          TeX -> Subscript[C,u\[Phi]],
499        Description -> "coefficient of Ouphi"},   
500
501  CuG== {
502        ParameterType -> Internal,
503          ComplexParameter->True,
504          InteractionOrder -> {QED,1},
505        ParameterName -> CuG,
506        Value -> RCuG + I ICuG,
507          TeX -> Subscript[C,uG],
508        Description -> "coefficient of OuG"},   
509
510  CuW== {
511        ParameterType -> Internal,
512          ComplexParameter->True,
513          InteractionOrder -> {QED,1},
514        ParameterName -> CuW,
515        Value -> RCuW + I ICuW,
516          TeX -> Subscript[C,uW],
517        Description -> "coefficient of OuW"},   
518
519  CuB== {
520        ParameterType -> Internal,
521          ComplexParameter->True,
522          InteractionOrder -> {QED,1},
523        ParameterName -> CuB,
524        Value -> RCuB + I ICuB,
525          TeX -> Subscript[C,uB],
526        Description -> "coefficient of OuB"},   
527
528  C1utR== {
529        ParameterType -> Internal,
530          ComplexParameter->True,
531          InteractionOrder -> {QED,1},
532        ParameterName -> C1utR,
533        Value -> RC1utR + I IC1utR,
534          TeX -> Subsuperscript[C,utR,1],
535        Description -> "coefficient of O1utR"},
536
537  C1utL== {
538        ParameterType -> Internal,
539          ComplexParameter->True,
540          InteractionOrder -> {QED,1},
541        ParameterName -> C1utL,
542        Value -> RC1utL + I IC1utL,
543          TeX -> Subsuperscript[C,utL,1],
544        Description -> "coefficient of O1utL"},
545
546  C3utL== {
547        ParameterType -> Internal,
548          ComplexParameter->True,
549          InteractionOrder -> {QED,1},
550        ParameterName -> C3utL,
551        Value -> RC3utL + I IC3utL,
552          TeX -> Subsuperscript[C,utL,3],
553        Description -> "coefficient of O3utL"},
554       
555(* with the charm *)         
556
557  Ctcphi== {
558        ParameterType -> Internal,
559          ComplexParameter->True,
560          InteractionOrder -> {QED,3},
561        ParameterName -> Ctcphi,
562        Value -> RCtcphi + I ICtcphi,
563          TeX -> Subscript[C,tc\[Phi]],
564        Description -> "coefficient of Otcphi"},   
565
566  CtcG== {
567        ParameterType -> Internal,
568          ComplexParameter->True,
569          InteractionOrder -> {QED,1},
570        ParameterName -> CtcG,
571        Value -> RCtcG + I ICtcG,
572          TeX -> Subscript[C,tcG],
573        Description -> "coefficient of OtcG"},   
574
575  CtcW== {
576        ParameterType -> Internal,
577          ComplexParameter->True,
578          InteractionOrder -> {QED,1},
579        ParameterName -> CtcW,
580        Value -> RCtcW + I ICtcW,
581          TeX -> Subscript[C,tcW],
582        Description -> "coefficient of OtcW"},   
583
584  CtcB== {
585        ParameterType -> Internal,
586          ComplexParameter->True,
587          InteractionOrder -> {QED,1},
588        ParameterName -> CtcB,
589        Value -> RCtcB + I ICtcB,
590          TeX -> Subscript[C,tcB],
591        Description -> "coefficient of OtcB"},
592
593Cctphi== {
594        ParameterType -> Internal,
595          ComplexParameter->True,
596          InteractionOrder -> {QED,3},
597        ParameterName -> Cctphi,
598        Value -> RCctphi + I ICctphi,
599          TeX -> Subscript[C,ct\[Phi]],
600        Description -> "coefficient of Octphi"},   
601
602  CctG== {
603        ParameterType -> Internal,
604          ComplexParameter->True,
605          InteractionOrder -> {QED,1},
606        ParameterName -> CctG,
607        Value -> RCctG + I ICctG,
608          TeX -> Subscript[C,ctG],
609        Description -> "coefficient of OctG"},   
610
611  CctW== {
612        ParameterType -> Internal,
613          ComplexParameter->True,
614          InteractionOrder -> {QED,1},
615        ParameterName -> CctW,
616        Value -> RCctW + I ICctW,
617          TeX -> Subscript[C,ctW],
618        Description -> "coefficient of OctW"},   
619
620  CctB== {
621        ParameterType -> Internal,
622          ComplexParameter->True,
623          InteractionOrder -> {QED,1},
624        ParameterName -> CctB,
625        Value -> RCctB + I ICctB,
626          TeX -> Subscript[C,ctB],
627        Description -> "coefficient of OctB"},   
628
629  C1ctR== {
630        ParameterType -> Internal,
631          ComplexParameter->True,
632          InteractionOrder -> {QED,1},
633        ParameterName -> C1ctR,
634        Value -> RC1ctR + I IC1ctR,
635          TeX -> Subsuperscript[C,ctR,1],
636        Description -> "coefficient of O1ctR"},
637
638  C1ctL== {
639        ParameterType -> Internal,
640          ComplexParameter->True,
641          InteractionOrder -> {QED,1},
642        ParameterName -> C1ctL,
643        Value -> RC1ctL + I IC1ctL,
644          TeX -> Subsuperscript[C,ctL,1],
645        Description -> "coefficient of O1ctL"},
646
647  C3ctL== {
648        ParameterType -> Internal,
649          ComplexParameter->True,
650          InteractionOrder -> {QED,1},
651        ParameterName -> C3ctL,
652        Value -> RC3ctL + I IC3ctL,
653          TeX -> Subsuperscript[C,ctL,3],
654        Description -> "coefficient of O3ctL"}       
655
656}
657
658(*1-3*)
659
660LtphinH := Ctphi/Lambda^2 ExpandIndices[
661  Module[{sp, ii, cc, jj, kk},
662   QLbar[sp, ii, 1, cc].uR[sp, 3, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}];
663Ltphi := LtphinH+HC[LtphinH];
664
665LtGnH := I*CtG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 1, i].uR [r, 3, j] Phibar[jj] Eps[ii, jj]  T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]];
666LtG := LtGnH+HC[LtGnH];
667
668LtWnH := I*CtW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 1, i].uR[r, 3, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]];
669      LtW := LtWnH+HC[LtWnH];
670
671LtBnH := I*CtB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 1, i].uR [r, 3, i] Phibar[jj] Eps[ii, jj]   (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]];
672LtB := LtBnH+HC[LtBnH];
673
674(*3-1*)
675
676LuphinH := Cuphi/Lambda^2 ExpandIndices[
677  Module[{sp, ii, cc, jj, kk},
678   QLbar[sp, ii, 3, cc].uR[sp, 1, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}];
679Luphi := LuphinH+HC[LuphinH];
680
681LuGnH := I*CuG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 1, j] Phibar[jj] Eps[ii, jj]  T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]];
682LuG := LuGnH+HC[LuGnH];
683
684LuWnH := I*CuW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 3, i].uR[r, 1, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]];
685      LuW := LuWnH+HC[LuWnH];
686
687LuBnH := I*CuB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 1, i] Phibar[jj] Eps[ii, jj]   (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]];
688LuB := LuBnH+HC[LuBnH];
689
690(*Currents*)
691
692L1utRnH := I* C1utR/Lambda^2 Module[{jj,mu,r,j,s},ExpandIndices[(Phibar[jj]DC[Phi[jj],mu]-DC[Phibar[jj],mu]Phi[jj])(uRbar[r,1,j].uR[s,3,j]Ga[mu,r,s]), FlavorExpand -> {SU2D, SU2W}]];
693L1utR:=L1utRnH + HC[L1utRnH];
694
695L1utLnH := I* C1utL/Lambda^2 Module[{jj,mu,r,ii,j,s},ExpandIndices[(Phibar[jj] DC[Phi[jj], mu] - DC[Phibar[jj], mu] Phi[jj]) (QLbar[r, ii, 1, j].QL[s, ii, 3, j] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]];
696L1utL:=L1utLnH+HC[L1utLnH];
697
698L3utLnH := I* C3utL/Lambda^2 Module[{jj,mu,r,ii,j,s,i,kk,c},ExpandIndices[2 (Phibar[jj] Ta[kk, jj, ii] DC[Phi[ii], mu] - DC[Phibar[jj], mu] Ta[kk, jj, ii] Phi[ii]) (QLbar[r, j, 1, c].QL[s, i, 3, c] 2 Ta[kk, j, i] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]];
699L3utL:=L3utLnH+HC[L3utLnH];
700
701(* with the charm *)
702
703LtcphinH := Ctcphi/Lambda^2 ExpandIndices[
704  Module[{sp, ii, cc, jj, kk},
705   QLbar[sp, ii, 2, cc].uR[sp, 3, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}];
706Ltcphi := LtcphinH+HC[LtcphinH];
707
708
709LtcGnH := I*CtcG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 2, i].uR [r, 3, j] Phibar[jj] Eps[ii, jj]  T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]];
710LtcG := LtcGnH+HC[LtcGnH];
711
712LtcWnH := I*CtcW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 2, i].uR[r, 3, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]];
713      LtcW := LtcWnH+HC[LtcWnH];
714
715LtcBnH := I*CtcB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 2, i].uR [r, 3, i] Phibar[jj] Eps[ii, jj]   (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]];
716LtcB := LtcBnH+HC[LtcBnH];
717
718(* with the top - charm *)
719
720LctphinH := Cctphi/Lambda^2 ExpandIndices[
721  Module[{sp, ii, cc, jj, kk},
722   QLbar[sp, ii, 3, cc].uR[sp, 2, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}];
723Lctphi := LctphinH+HC[LctphinH];
724
725
726LctGnH := I*CctG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 2, j] Phibar[jj] Eps[ii, jj]  T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]];
727LctG := LctGnH+HC[LctGnH];
728
729LctWnH := I*CctW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 3, i].uR[r, 2, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]];
730      LctW := LctWnH+HC[LctWnH];
731
732LctBnH := I*CctB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 2, i] Phibar[jj] Eps[ii, jj]   (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r]  FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]];
733LctB := LctBnH+HC[LctBnH];
734
735
736(*Currents 2-3*)
737
738L1ctRnH := I* C1ctR/Lambda^2 Module[{jj,mu,r,j,s},ExpandIndices[(Phibar[jj]DC[Phi[jj],mu]-DC[Phibar[jj],mu]Phi[jj])(uRbar[r,2,j].uR[s,3,j]Ga[mu,r,s]), FlavorExpand -> {SU2D, SU2W}]];
739L1ctR:=L1ctRnH + HC[L1ctRnH];
740
741L1ctLnH := I* C1ctL/Lambda^2 Module[{jj,mu,r,ii,j,s},ExpandIndices[(Phibar[jj] DC[Phi[jj], mu] - DC[Phibar[jj], mu] Phi[jj]) (QLbar[r, ii, 2, j].QL[s, ii, 3, j] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]];
742L1ctL:=L1ctLnH+HC[L1ctLnH];
743
744L3ctLnH := I* C3ctL/Lambda^2 Module[{jj,mu,r,ii,j,s,i,kk,c},ExpandIndices[2 (Phibar[jj] Ta[kk, jj, ii] DC[Phi[ii], mu] - DC[Phibar[jj], mu] Ta[kk, jj, ii] Phi[ii]) (QLbar[r, j, 2, c].QL[s, i, 3, c] 2 Ta[kk, j, i] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]];
745L3ctL:=L3ctLnH+HC[L3ctLnH];