# VLQ: VLQ.fr

File VLQ.fr, 48.2 KB (added by buchkremer, 6 years ago) |
---|

Line | |
---|---|

1 | (***************************************************************************************************************) |

2 | (****** FeynRules mod-file for Model Independent searches of top partners ******) |

3 | (****** X(5/3), T(2/3), B(-1/3) & Y(-4/3) with arbitrary couplings ******) |

4 | (****** ******) |

5 | (****** Authors: M. Buchkremer, G. Cacciapaglia, A. Deandrea,L. Panizzi ******) |

6 | (****** ******) |

7 | (***************************************************************************************************************) |

8 | |

9 | M$ModelName = "VLQ"; |

10 | |

11 | |

12 | M$Information = {Authors -> {"M. Buchkremer","G. Cacciapaglia","A. Deandrea","L. Panizzi"}, |

13 | Version -> "1.2.5", |

14 | Date -> "10. 04. 2013", |

15 | Institutions -> {"Universite catholique de Louvain (CP3)","Universite de Lyon (CNRS/IN2P3)","University of Southampton (School of Physics and Astronomy)"}, |

16 | Emails -> {"mathieu.buchkremer@uclouvain.be", "g.cacciapaglia@ipnl.in2p3.fr","deandrea@ipnl.in2p3.fr", "l.panizzi@soton.ac.uk"}}; |

17 | |

18 | |

19 | (******* Index definitions ********) |

20 | |

21 | IndexRange[ Index[Generation] ] = Range[3] |

22 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]] |

23 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]] |

24 | IndexRange[ Index[SU2W] ] = Unfold[Range[3]] |

25 | IndexStyle[Colour, i] |

26 | IndexStyle[Generation, f] |

27 | IndexStyle[Gluon ,a] |

28 | IndexStyle[SU2W ,k] |

29 | |

30 | (******* Gauge parameters (for FeynArts) ********) |

31 | |

32 | GaugeXi[ V[1] ] = GaugeXi[A]; |

33 | GaugeXi[ V[2] ] = GaugeXi[Z]; |

34 | GaugeXi[ V[3] ] = GaugeXi[W]; |

35 | GaugeXi[ V[4] ] = GaugeXi[G]; |

36 | GaugeXi[ S[1] ] = 1; |

37 | GaugeXi[ S[2] ] = GaugeXi[Z]; |

38 | GaugeXi[ S[3] ] = GaugeXi[W]; |

39 | GaugeXi[ U[1] ] = GaugeXi[A]; |

40 | GaugeXi[ U[2] ] = GaugeXi[Z]; |

41 | GaugeXi[ U[31] ] = GaugeXi[W]; |

42 | GaugeXi[ U[32] ] = GaugeXi[W]; |

43 | GaugeXi[ U[4] ] = GaugeXi[G]; |

44 | |

45 | (**************** Parameters *************) |

46 | |

47 | M$Parameters = { |

48 | |

49 | (* External parameters, SM *) |

50 | |

51 | \[Alpha]EWM1== { |

52 | ParameterType -> External, |

53 | BlockName -> SMINPUTS, |

54 | ParameterName -> aEWM1, |

55 | InteractionOrder -> {QED, -2}, |

56 | Value -> 127.9, |

57 | Description -> "Inverse of the electroweak coupling constant"}, |

58 | |

59 | Gf == { |

60 | ParameterType -> External, |

61 | BlockName -> SMINPUTS, |

62 | TeX -> Subscript[G, f], |

63 | InteractionOrder -> {QED, 2}, |

64 | Value -> 1.16600 * 10^(-5), |

65 | Description -> "Fermi constant"}, |

66 | |

67 | \[Alpha]S == { |

68 | ParameterType -> External, |

69 | BlockName -> SMINPUTS, |

70 | TeX -> Subscript[\[Alpha], s], |

71 | ParameterName -> aS, |

72 | InteractionOrder -> {QCD, 2}, |

73 | Value -> 0.118, |

74 | Description -> "Strong coupling constant at the Z pole."}, |

75 | |

76 | ymdo == { |

77 | ParameterType -> External, |

78 | BlockName -> YUKAWA, |

79 | Value -> 5.04*10^(-3), |

80 | OrderBlock -> {1}, |

81 | Description -> "Down Yukawa mass"}, |

82 | |

83 | ymup == { |

84 | ParameterType -> External, |

85 | BlockName -> YUKAWA, |

86 | Value -> 2.55*10^(-3), |

87 | OrderBlock -> {2}, |

88 | Description -> "Up Yukawa mass"}, |

89 | |

90 | yms == { |

91 | ParameterType -> External, |

92 | BlockName -> YUKAWA, |

93 | Value -> 0.101, |

94 | OrderBlock -> {3}, |

95 | Description -> "Strange Yukawa mass"}, |

96 | |

97 | ymc == { |

98 | ParameterType -> External, |

99 | BlockName -> YUKAWA, |

100 | Value -> 1.25, |

101 | OrderBlock -> {4}, |

102 | Description -> "Charm Yukawa mass"}, |

103 | |

104 | ymb == { |

105 | ParameterType -> External, |

106 | BlockName -> YUKAWA, |

107 | Value -> 4.2, |

108 | OrderBlock -> {5}, |

109 | Description -> "Bottom Yukawa mass"}, |

110 | |

111 | ymt == { |

112 | ParameterType -> External, |

113 | BlockName -> YUKAWA, |

114 | Value -> 174.3, |

115 | OrderBlock -> {6}, |

116 | Description -> "Top Yukawa mass"}, |

117 | |

118 | yme == { |

119 | ParameterType -> External, |

120 | BlockName -> YUKAWA, |

121 | Value -> 5.11*10^(-4), |

122 | OrderBlock -> {11}, |

123 | Description -> "Electron Yukawa mass"}, |

124 | |

125 | ymm == { |

126 | ParameterType -> External, |

127 | BlockName -> YUKAWA, |

128 | Value -> 0.10566, |

129 | OrderBlock -> {13}, |

130 | Description -> "Muon Yukawa mass"}, |

131 | |

132 | ymtau == { |

133 | ParameterType -> External, |

134 | BlockName -> YUKAWA, |

135 | Value -> 1.777, |

136 | OrderBlock -> {15}, |

137 | Description -> "Tau Yukawa mass"}, |

138 | |

139 | CKM == { |

140 | ParameterType -> External, |

141 | BlockName -> CKMBlock, |

142 | ComplexParameter -> False, |

143 | Indices -> {Index[Generation], Index[Generation]}, |

144 | TensorClass -> CKM, |

145 | Unitary -> True, |

146 | Value -> {CKM[1,1] -> 0.97428, |

147 | CKM[1,2] -> 0.2253, |

148 | CKM[1,3] -> 0.00347, |

149 | CKM[2,1] -> 0.2252, |

150 | CKM[2,2] -> 0.97345, |

151 | CKM[2,3] -> 0.0410, |

152 | CKM[3,1] -> 0.00862, |

153 | CKM[3,2] -> 0.0403, |

154 | CKM[3,3] -> 0.999152}, |

155 | Description -> "SM CKM Matrix"}, |

156 | |

157 | (* External parameters, VLQ *) |

158 | |

159 | KX == { |

160 | ParameterType -> External, |

161 | BlockName -> Kappa, |

162 | ComplexParameter -> False, |

163 | Value -> 1, |

164 | Description -> "Kappa_X parameter"}, |

165 | |

166 | KT == { |

167 | ParameterType -> External, |

168 | BlockName -> Kappa, |

169 | ComplexParameter -> False, |

170 | Value -> 1, |

171 | Description -> "Kappa_T parameter"}, |

172 | |

173 | KB == { |

174 | ParameterType -> External, |

175 | BlockName -> Kappa, |

176 | ComplexParameter -> False, |

177 | Value -> 1, |

178 | Description -> "Kappa_B parameter"}, |

179 | |

180 | KY == { |

181 | ParameterType -> External, |

182 | BlockName -> Kappa, |

183 | ComplexParameter -> False, |

184 | Value -> 1, |

185 | Description -> "Kappa_Y parameter"}, |

186 | |

187 | xitpw == { |

188 | ParameterType -> External, |

189 | BlockName -> Xi, |

190 | ComplexParameter -> False, |

191 | Value -> 0.4, |

192 | Description -> "Branching ratio of T in W"}, |

193 | |

194 | xitpz == { |

195 | ParameterType -> External, |

196 | BlockName -> Xi, |

197 | ComplexParameter -> False, |

198 | Value -> 0.3, |

199 | Description -> "Branching ratio of T in Z"}, |

200 | |

201 | xitph == { |

202 | ParameterType -> External, |

203 | BlockName -> Xi, |

204 | ComplexParameter -> False, |

205 | Value -> 0.3, |

206 | Description -> "Branching ratio of T in H"}, |

207 | |

208 | xibpw == { |

209 | ParameterType -> External, |

210 | BlockName -> Xi, |

211 | ComplexParameter -> False, |

212 | Value -> 0.4, |

213 | Description -> "Branching ratio of B in W"}, |

214 | |

215 | xibpz == { |

216 | ParameterType -> External, |

217 | BlockName -> Xi, |

218 | ComplexParameter -> False, |

219 | Value -> 0.3, |

220 | Description -> "Branching ratio of B in Z"}, |

221 | |

222 | xibph == { |

223 | ParameterType -> External, |

224 | BlockName -> Xi, |

225 | ComplexParameter -> False, |

226 | Value -> 0.3, |

227 | Description -> "Branching ratio of B in H"}, |

228 | |

229 | zetaXuL == { |

230 | ParameterType -> External, |

231 | BlockName -> Zeta, |

232 | ComplexParameter -> False, |

233 | Value -> 0.3, |

234 | Description -> "X-u mixing (left-handed)"}, |

235 | |

236 | zetaXcL == { |

237 | ParameterType -> External, |

238 | BlockName -> Zeta, |

239 | ComplexParameter -> False, |

240 | Value -> 0.3, |

241 | Description -> "X-c mixing (left-handed)"}, |

242 | |

243 | zetaXtL == { |

244 | ParameterType -> External, |

245 | BlockName -> Zeta, |

246 | ComplexParameter -> False, |

247 | Value -> 0.4, |

248 | Description -> "X-t mixing (left-handed)"}, |

249 | |

250 | zetaTuL == { |

251 | ParameterType -> External, |

252 | BlockName -> Zeta, |

253 | ComplexParameter -> False, |

254 | Value -> 0.3, |

255 | Description -> "T-u mixing (left-handed)"}, |

256 | |

257 | zetaTcL == { |

258 | ParameterType -> External, |

259 | BlockName -> Zeta, |

260 | ComplexParameter -> False, |

261 | Value -> 0.3, |

262 | Description -> "T-c mixing (left-handed)"}, |

263 | |

264 | zetaTtL == { |

265 | ParameterType -> External, |

266 | BlockName -> Zeta, |

267 | ComplexParameter -> False, |

268 | Value -> 0.4, |

269 | Description -> "T-t mixing (left-handed)"}, |

270 | |

271 | zetaBdL == { |

272 | ParameterType -> External, |

273 | BlockName -> Zeta, |

274 | ComplexParameter -> False, |

275 | Value -> 0.3, |

276 | Description -> "B-d mixing (left-handed)"}, |

277 | |

278 | zetaBsL == { |

279 | ParameterType -> External, |

280 | BlockName -> Zeta, |

281 | ComplexParameter -> False, |

282 | Value -> 0.3, |

283 | Description -> "B-s mixing (left-handed)"}, |

284 | |

285 | zetaBbL == { |

286 | ParameterType -> External, |

287 | BlockName -> Zeta, |

288 | ComplexParameter -> False, |

289 | Value -> 0.4, |

290 | Description -> "B-b mixing (left-handed)"}, |

291 | |

292 | zetaYdL == { |

293 | ParameterType -> External, |

294 | BlockName -> Zeta, |

295 | ComplexParameter -> False, |

296 | Value -> 0.3, |

297 | Description -> "Y-d mixing (left-handed)"}, |

298 | |

299 | zetaYsL == { |

300 | ParameterType -> External, |

301 | BlockName -> Zeta, |

302 | ComplexParameter -> False, |

303 | Value -> 0.3, |

304 | Description -> "Y-s mixing (left-handed)"}, |

305 | |

306 | zetaYbL == { |

307 | ParameterType -> External, |

308 | BlockName -> Zeta, |

309 | ComplexParameter -> False, |

310 | Value -> 0.4, |

311 | Description -> "Y-b mixing (left-handed)"}, |

312 | |

313 | |

314 | zetaXuR == { |

315 | ParameterType -> External, |

316 | BlockName -> Zeta, |

317 | ComplexParameter -> False, |

318 | Value -> 0, |

319 | Description -> "X-u mixing (right-handed)"}, |

320 | |

321 | zetaXcR == { |

322 | ParameterType -> External, |

323 | BlockName -> Zeta, |

324 | ComplexParameter -> False, |

325 | Value -> 0, |

326 | Description -> "X-c mixing (right-handed)"}, |

327 | |

328 | zetaXtR == { |

329 | ParameterType -> External, |

330 | BlockName -> Zeta, |

331 | ComplexParameter -> False, |

332 | Value -> 0, |

333 | Description -> "X-t mixing (right-handed)"}, |

334 | |

335 | zetaTuR == { |

336 | ParameterType -> External, |

337 | BlockName -> Zeta, |

338 | ComplexParameter -> False, |

339 | Value -> 0, |

340 | Description -> "T-u mixing (right-handed)"}, |

341 | |

342 | zetaTcR == { |

343 | ParameterType -> External, |

344 | BlockName -> Zeta, |

345 | ComplexParameter -> False, |

346 | Value -> 0, |

347 | Description -> "T-c mixing (right-handed)"}, |

348 | |

349 | zetaTtR == { |

350 | ParameterType -> External, |

351 | BlockName -> Zeta, |

352 | ComplexParameter -> False, |

353 | Value -> 0, |

354 | Description -> "T-t mixing (right-handed)"}, |

355 | |

356 | zetaBdR == { |

357 | ParameterType -> External, |

358 | BlockName -> Zeta, |

359 | ComplexParameter -> False, |

360 | Value -> 0, |

361 | Description -> "B-d mixing (right-handed)"}, |

362 | |

363 | zetaBsR == { |

364 | ParameterType -> External, |

365 | BlockName -> Zeta, |

366 | ComplexParameter -> False, |

367 | Value -> 0, |

368 | Description -> "B-s mixing (right-handed)"}, |

369 | |

370 | zetaBbR == { |

371 | ParameterType -> External, |

372 | BlockName -> Zeta, |

373 | ComplexParameter -> False, |

374 | Value -> 0, |

375 | Description -> "B-b mixing (right-handed)"}, |

376 | |

377 | zetaYdR == { |

378 | ParameterType -> External, |

379 | BlockName -> Zeta, |

380 | ComplexParameter -> False, |

381 | Value -> 0, |

382 | Description -> "Y-d mixing (right-handed)"}, |

383 | |

384 | zetaYsR == { |

385 | ParameterType -> External, |

386 | BlockName -> Zeta, |

387 | ComplexParameter -> False, |

388 | Value -> 0, |

389 | Description -> "Y-s mixing (right-handed)"}, |

390 | |

391 | zetaYbR == { |

392 | ParameterType -> External, |

393 | BlockName -> Zeta, |

394 | ComplexParameter -> False, |

395 | Value -> 0, |

396 | Description -> "Y-b mixing (right-handed)"}, |

397 | |

398 | |

399 | (* Internal Parameters, SM *) |

400 | |

401 | \[Alpha]EW == { |

402 | ParameterType -> Internal, |

403 | Value -> 1/\[Alpha]EWM1, |

404 | TeX -> Subscript[\[Alpha], EW], |

405 | ParameterName -> aEW, |

406 | InteractionOrder -> {QED, 2}, |

407 | Description -> "Electroweak coupling contant"}, |

408 | |

409 | |

410 | MW == { |

411 | ParameterType -> Internal, |

412 | Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]], |

413 | TeX -> Subscript[M, W], |

414 | Description -> "W mass"}, |

415 | |

416 | sw2 == { |

417 | ParameterType -> Internal, |

418 | Value -> 1-(MW/MZ)^2, |

419 | Description -> "Squared Sin of the Weinberg angle"}, |

420 | |

421 | ee == { |

422 | TeX -> e, |

423 | ParameterType -> Internal, |

424 | Value -> Sqrt[4 Pi \[Alpha]EW], |

425 | InteractionOrder -> {QED, 1}, |

426 | Description -> "Electric coupling constant"}, |

427 | |

428 | cw == { |

429 | TeX -> Subscript[c, w], |

430 | ParameterType -> Internal, |

431 | Value -> Sqrt[1 - sw2], |

432 | Description -> "Cos of the Weinberg angle"}, |

433 | |

434 | sw == { |

435 | TeX -> Subscript[s, w], |

436 | ParameterType -> Internal, |

437 | Value -> Sqrt[sw2], |

438 | Description -> "Sin of the Weinberg angle"}, |

439 | |

440 | gw == { |

441 | TeX -> Subscript[g, w], |

442 | ParameterType -> Internal, |

443 | Value -> ee / sw, |

444 | InteractionOrder -> {QED, 1}, |

445 | Description -> "Weak coupling constant"}, |

446 | |

447 | g1 == { |

448 | TeX -> Subscript[g, 1], |

449 | ParameterType -> Internal, |

450 | Value -> ee / cw, |

451 | InteractionOrder -> {QED, 1}, |

452 | Description -> "U(1)Y coupling constant"}, |

453 | |

454 | gs == { |

455 | TeX -> Subscript[g, s], |

456 | ParameterType -> Internal, |

457 | Value -> Sqrt[4 Pi \[Alpha]S], |

458 | InteractionOrder -> {QCD, 1}, |

459 | ParameterName -> G, |

460 | Description -> "Strong coupling constant"}, |

461 | |

462 | v == { |

463 | ParameterType -> Internal, |

464 | Value -> 2*MW*sw/ee, |

465 | InteractionOrder -> {QED, -1}, |

466 | Description -> "Higgs VEV"}, |

467 | |

468 | \[Lambda] == { |

469 | ParameterType -> Internal, |

470 | Value -> MH^2/(2*v^2), |

471 | InteractionOrder -> {QED, 2}, |

472 | ParameterName -> lam, |

473 | Description -> "Higgs quartic coupling"}, |

474 | |

475 | muH == { |

476 | ParameterType -> Internal, |

477 | Value -> Sqrt[v^2 \[Lambda]], |

478 | TeX -> \[Mu], |

479 | Description -> "Coefficient of the quadratic piece of the Higgs potential"}, |

480 | |

481 | yl == { |

482 | TeX -> Superscript[y, l], |

483 | Indices -> {Index[Generation]}, |

484 | AllowSummation -> True, |

485 | ParameterType -> Internal, |

486 | Value -> {yl[1] -> Sqrt[2] yme / v, yl[2] -> Sqrt[2] ymm / v, yl[3] -> Sqrt[2] ymtau / v}, |

487 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau}, |

488 | InteractionOrder -> {QED, 1}, |

489 | ComplexParameter -> False, |

490 | Description -> "Lepton Yukawa coupling"}, |

491 | |

492 | yu == { |

493 | TeX -> Superscript[y, u], |

494 | Indices -> {Index[Generation]}, |

495 | AllowSummation -> True, |

496 | ParameterType -> Internal, |

497 | Value -> {yu[1] -> Sqrt[2] ymup / v, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v}, |

498 | ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt}, |

499 | InteractionOrder -> {QED, 1}, |

500 | ComplexParameter -> False, |

501 | Description -> "U-quark Yukawa coupling"}, |

502 | |

503 | yd == { |

504 | TeX -> Superscript[y, d], |

505 | Indices -> {Index[Generation]}, |

506 | AllowSummation -> True, |

507 | ParameterType -> Internal, |

508 | Value -> {yd[1] -> Sqrt[2] ymdo / v, yd[2] -> Sqrt[2] yms / v, yd[3] -> Sqrt[2] ymb / v}, |

509 | ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb}, |

510 | InteractionOrder -> {QED, 1}, |

511 | ComplexParameter -> False, |

512 | Description -> "D-quark Yukawa coupling"}, |

513 | |

514 | |

515 | (************** Internal Parameters, VLQ **************) |

516 | (* X couplings *) |

517 | |

518 | KXuL == { |

519 | ParameterType -> Internal, |

520 | BlockName -> WIDTH, |

521 | ComplexParameter -> False, |

522 | Value -> (ee/sw*Sqrt[zetaXuL/gamma0xw])/Sqrt[2], |

523 | InteractionOrder -> {QED, 1}, |

524 | Description -> "XuW coupling (left-handed)"}, |

525 | |

526 | KXcL == { |

527 | ParameterType -> Internal, |

528 | BlockName -> WIDTH, |

529 | ComplexParameter -> False, |

530 | Value -> (ee/sw*Sqrt[zetaXcL/gamma0xw])/Sqrt[2], |

531 | InteractionOrder -> {QED, 1}, |

532 | Description -> "XcW coupling (left-handed)"}, |

533 | |

534 | KXtL == { |

535 | ParameterType -> Internal, |

536 | BlockName -> WIDTH, |

537 | ComplexParameter -> False, |

538 | Value -> (ee/sw*Sqrt[zetaXtL/gamma0xw])/Sqrt[2], |

539 | InteractionOrder -> {QED, 1}, |

540 | Description -> "XtW coupling (left-handed)"}, |

541 | |

542 | KXuR == { |

543 | ParameterType -> Internal, |

544 | BlockName -> WIDTH, |

545 | ComplexParameter -> False, |

546 | Value -> (ee/sw*Sqrt[zetaXuR/gamma0xw])/Sqrt[2], |

547 | InteractionOrder -> {QED, 1}, |

548 | Description -> "XuW coupling (right-handed)"}, |

549 | |

550 | KXcR == { |

551 | ParameterType -> Internal, |

552 | BlockName -> WIDTH, |

553 | ComplexParameter -> False, |

554 | Value -> (ee/sw*Sqrt[zetaXcR/gamma0xw])/Sqrt[2], |

555 | InteractionOrder -> {QED, 1}, |

556 | Description -> "XcW coupling (right-handed)"}, |

557 | |

558 | KXtR == { |

559 | ParameterType -> Internal, |

560 | BlockName -> Kappa, |

561 | ComplexParameter -> False, |

562 | Value -> (ee/sw*Sqrt[zetaXtR/gamma0xw])/Sqrt[2], |

563 | InteractionOrder -> {QED, 1}, |

564 | Description -> "XtW coupling (right-handed)"}, |

565 | |

566 | (* Y couplings *) |

567 | |

568 | KYdL == { |

569 | ParameterType -> Internal, |

570 | BlockName -> Kappa, |

571 | ComplexParameter -> False, |

572 | Value -> (ee/sw*Sqrt[zetaYdL/gamma0yw])/Sqrt[2], |

573 | InteractionOrder -> {QED, 1}, |

574 | Description -> "YdW coupling (left-handed)"}, |

575 | |

576 | KYsL == { |

577 | ParameterType -> Internal, |

578 | BlockName -> Kappa, |

579 | ComplexParameter -> False, |

580 | Value -> (ee/sw*Sqrt[zetaYsL/gamma0yw])/Sqrt[2], |

581 | InteractionOrder -> {QED, 1}, |

582 | Description -> "YsW coupling (left-handed)"}, |

583 | |

584 | KYbL == { |

585 | ParameterType -> Internal, |

586 | BlockName -> Kappa, |

587 | ComplexParameter -> False, |

588 | Value -> (ee/sw*Sqrt[zetaYbL/gamma0yw])/Sqrt[2], |

589 | InteractionOrder -> {QED, 1}, |

590 | Description -> "YbW coupling (left-handed)"}, |

591 | |

592 | KYdR == { |

593 | ParameterType -> Internal, |

594 | BlockName -> Kappa, |

595 | ComplexParameter -> False, |

596 | Value -> (ee/sw*Sqrt[zetaYdR/gamma0yw])/Sqrt[2], |

597 | InteractionOrder -> {QED, 1}, |

598 | Description -> "YdW coupling (right-handed)"}, |

599 | |

600 | KYsR == { |

601 | ParameterType -> Internal, |

602 | BlockName -> Kappa, |

603 | ComplexParameter -> False, |

604 | Value -> (ee/sw*Sqrt[zetaYsR/gamma0yw])/Sqrt[2], |

605 | InteractionOrder -> {QED, 1}, |

606 | Description -> "YsW coupling (right-handed)"}, |

607 | |

608 | KYbR == { |

609 | ParameterType -> Internal, |

610 | BlockName -> Kappa, |

611 | ComplexParameter -> False, |

612 | Value -> (ee/sw*Sqrt[zetaYbR/gamma0yw])/Sqrt[2], |

613 | InteractionOrder -> {QED, 1}, |

614 | Description -> "YbW coupling (right-handed)"}, |

615 | |

616 | (* T couplings *) |

617 | |

618 | KTuLw == { |

619 | ParameterType -> Internal, |

620 | BlockName -> Kappa, |

621 | ComplexParameter -> False, |

622 | Value -> (ee/sw*Sqrt[zetaTuL*xitpw/gamma0tpw])/Sqrt[2], |

623 | InteractionOrder -> {QED, 1}, |

624 | Description -> "TuW coupling (left-handed)"}, |

625 | |

626 | KTcLw == { |

627 | ParameterType -> Internal, |

628 | BlockName -> Kappa, |

629 | ComplexParameter -> False, |

630 | Value -> (ee/sw*Sqrt[zetaTcL*xitpw/gamma0tpw])/Sqrt[2], |

631 | InteractionOrder -> {QED, 1}, |

632 | Description -> "TcW coupling (left-handed)"}, |

633 | |

634 | KTtLw == { |

635 | ParameterType -> Internal, |

636 | BlockName -> Kappa, |

637 | ComplexParameter -> False, |

638 | Value -> (ee/sw*Sqrt[zetaTtL*xitpw/gamma0tpw])/Sqrt[2], |

639 | InteractionOrder -> {QED, 1}, |

640 | Description -> "TtW coupling (left-handed)"}, |

641 | |

642 | KTuRw == { |

643 | ParameterType -> Internal, |

644 | BlockName -> Kappa, |

645 | ComplexParameter -> False, |

646 | Value -> (ee/sw*Sqrt[zetaTuR*xitpw/gamma0tpw])/Sqrt[2], |

647 | InteractionOrder -> {QED, 1}, |

648 | Description -> "TuW coupling (right-handed)"}, |

649 | |

650 | KTcRw == { |

651 | ParameterType -> Internal, |

652 | BlockName -> Kappa, |

653 | ComplexParameter -> False, |

654 | Value -> (ee/sw*Sqrt[zetaTcR*xitpw/gamma0tpw])/Sqrt[2], |

655 | InteractionOrder -> {QED, 1}, |

656 | Description -> "TcW coupling (right-handed)"}, |

657 | |

658 | KTtRw == { |

659 | ParameterType -> Internal, |

660 | BlockName -> Kappa, |

661 | ComplexParameter -> False, |

662 | Value -> (ee/sw*Sqrt[zetaTtR*xitpw/gamma0tpw])/Sqrt[2], |

663 | InteractionOrder -> {QED, 1}, |

664 | Description -> "TtW coupling (right-handed)"}, |

665 | |

666 | KTuLz == { |

667 | ParameterType -> Internal, |

668 | BlockName -> Kappa, |

669 | ComplexParameter -> False, |

670 | Value -> (ee/sw*Sqrt[zetaTuL*xitpz/gamma0tpz])/2/cw, |

671 | InteractionOrder -> {QED, 1}, |

672 | Description -> "TuZ coupling (left-handed)"}, |

673 | |

674 | KTcLz == { |

675 | ParameterType -> Internal, |

676 | BlockName -> Kappa, |

677 | ComplexParameter -> False, |

678 | Value -> (ee/sw*Sqrt[zetaTcL*xitpz/gamma0tpz])/2/cw, |

679 | InteractionOrder -> {QED, 1}, |

680 | Description -> "TcZ coupling (left-handed)"}, |

681 | |

682 | KTtLz == { |

683 | ParameterType -> Internal, |

684 | BlockName -> Kappa, |

685 | ComplexParameter -> False, |

686 | Value -> (ee/sw*Sqrt[zetaTtL*xitpz/gamma0tpz])/2/cw, |

687 | InteractionOrder -> {QED, 1}, |

688 | Description -> "TtZ coupling (left-handed)"}, |

689 | |

690 | KTuRz == { |

691 | ParameterType -> Internal, |

692 | BlockName -> Kappa, |

693 | ComplexParameter -> False, |

694 | Value -> (ee/sw*Sqrt[zetaTuR*xitpz/gamma0tpz])/2/cw, |

695 | InteractionOrder -> {QED, 1}, |

696 | Description -> "TuZ coupling (right-handed)"}, |

697 | |

698 | KTcRz == { |

699 | ParameterType -> Internal, |

700 | BlockName -> Kappa, |

701 | ComplexParameter -> False, |

702 | Value -> (ee/sw*Sqrt[zetaTcR*xitpz/gamma0tpz])/2/cw, |

703 | InteractionOrder -> {QED, 1}, |

704 | Description -> "TcZ coupling (right-handed)"}, |

705 | |

706 | KTtRz == { |

707 | ParameterType -> Internal, |

708 | BlockName -> Kappa, |

709 | ComplexParameter -> False, |

710 | Value -> (ee/sw*Sqrt[zetaTtR*xitpz/gamma0tpz])/2/cw, |

711 | InteractionOrder -> {QED, 1}, |

712 | Description -> "TtZ coupling (right-handed)"}, |

713 | |

714 | KTuLh == { |

715 | ParameterType -> Internal, |

716 | BlockName -> Kappa, |

717 | ComplexParameter -> False, |

718 | Value -> (Sqrt[zetaTuL*xitph/gamma0tph]), |

719 | InteractionOrder -> {QED, 0}, |

720 | Description -> "TuH coupling (left-handed)"}, |

721 | |

722 | KTcLh == { |

723 | ParameterType -> Internal, |

724 | BlockName -> Kappa, |

725 | ComplexParameter -> False, |

726 | Value -> (Sqrt[zetaTcL*xitph/gamma0tph]), |

727 | InteractionOrder -> {QED, 0}, |

728 | Description -> "TcH coupling (left-handed)"}, |

729 | |

730 | KTtLh == { |

731 | ParameterType -> Internal, |

732 | BlockName -> Kappa, |

733 | ComplexParameter -> False, |

734 | Value -> (Sqrt[zetaTtL*xitph/gamma0tph]), |

735 | InteractionOrder -> {QED, 0}, |

736 | Description -> "TtH coupling (left-handed)"}, |

737 | |

738 | KTuRh == { |

739 | ParameterType -> Internal, |

740 | BlockName -> Kappa, |

741 | ComplexParameter -> False, |

742 | Value -> (Sqrt[zetaTuR*xitph/gamma0tph]), |

743 | InteractionOrder -> {QED, 0}, |

744 | Description -> "TuH coupling (right-handed)"}, |

745 | |

746 | KTcRh == { |

747 | ParameterType -> Internal, |

748 | BlockName -> Kappa, |

749 | ComplexParameter -> False, |

750 | Value -> (Sqrt[zetaTcR*xitph/gamma0tph]), |

751 | InteractionOrder -> {QED, 0}, |

752 | Description -> "TcH coupling (right-handed)"}, |

753 | |

754 | KTtRh == { |

755 | ParameterType -> Internal, |

756 | BlockName -> Kappa, |

757 | ComplexParameter -> False, |

758 | Value -> (Sqrt[zetaTtR*xitph/gamma0tph]), |

759 | InteractionOrder -> {QED, 0}, |

760 | Description -> "TtH coupling (right-handed)"}, |

761 | |

762 | (* B couplings *) |

763 | |

764 | KBdLw == { |

765 | ParameterType -> Internal, |

766 | BlockName -> Kappa, |

767 | ComplexParameter -> False, |

768 | Value -> (ee/sw*Sqrt[zetaBdL*xibpw/gamma0bpw])/Sqrt[2], |

769 | InteractionOrder -> {QED, 1}, |

770 | Description -> "BdW coupling (left-handed)"}, |

771 | |

772 | KBsLw == { |

773 | ParameterType -> Internal, |

774 | BlockName -> Kappa, |

775 | ComplexParameter -> False, |

776 | Value -> (ee/sw*Sqrt[zetaBsL*xibpw/gamma0bpw])/Sqrt[2], |

777 | InteractionOrder -> {QED, 1}, |

778 | Description -> "BsW coupling (left-handed)"}, |

779 | |

780 | KBbLw == { |

781 | ParameterType -> Internal, |

782 | BlockName -> Kappa, |

783 | ComplexParameter -> False, |

784 | Value -> (gw*Sqrt[zetaBbL*xibpw/gamma0bpw])/Sqrt[2], |

785 | InteractionOrder -> {QED, 1}, |

786 | Description -> "BbW coupling (left-handed)"}, |

787 | |

788 | KBdRw == { |

789 | ParameterType -> Internal, |

790 | BlockName -> Kappa, |

791 | ComplexParameter -> False, |

792 | Value -> (ee/sw*Sqrt[zetaBdR*xibpw/gamma0bpw])/Sqrt[2], |

793 | InteractionOrder -> {QED, 1}, |

794 | Description -> "BdW coupling (right-handed)"}, |

795 | |

796 | KBsRw == { |

797 | ParameterType -> Internal, |

798 | BlockName -> Kappa, |

799 | ComplexParameter -> False, |

800 | Value -> (gw*Sqrt[zetaBsR*xibpw/gamma0bpw])/Sqrt[2], |

801 | InteractionOrder -> {QED, 1}, |

802 | Description -> "BsW coupling (right-handed)"}, |

803 | |

804 | KBbRw == { |

805 | ParameterType -> Internal, |

806 | BlockName -> Kappa, |

807 | ComplexParameter -> False, |

808 | Value -> (gw*Sqrt[zetaBbR*xibpw/gamma0bpw])/Sqrt[2], |

809 | InteractionOrder -> {QED, 1}, |

810 | Description -> "BbW coupling (right-handed)"}, |

811 | |

812 | KBdLz == { |

813 | ParameterType -> Internal, |

814 | BlockName -> Kappa, |

815 | ComplexParameter -> False, |

816 | Value -> (gw*Sqrt[zetaBdL*xibpz/gamma0bpz])/2/cw, |

817 | InteractionOrder -> {QED, 1}, |

818 | Description -> "BdZ coupling (left-handed)"}, |

819 | |

820 | KBsLz == { |

821 | ParameterType -> Internal, |

822 | BlockName -> Kappa, |

823 | ComplexParameter -> False, |

824 | Value -> (gw*Sqrt[zetaBsL*xibpz/gamma0bpz])/2/cw, |

825 | InteractionOrder -> {QED, 1}, |

826 | Description -> "BsZ coupling (left-handed)"}, |

827 | |

828 | KBbLz == { |

829 | ParameterType -> Internal, |

830 | BlockName -> Kappa, |

831 | ComplexParameter -> False, |

832 | Value -> (gw*Sqrt[zetaBbL*xibpz/gamma0bpz])/2/cw, |

833 | InteractionOrder -> {QED, 1}, |

834 | Description -> "BbZ coupling (left-handed)"}, |

835 | |

836 | KBdRz == { |

837 | ParameterType -> Internal, |

838 | BlockName -> Kappa, |

839 | ComplexParameter -> False, |

840 | Value -> (gw*Sqrt[zetaBdR*xibpz/gamma0bpz])/2/cw, |

841 | InteractionOrder -> {QED, 1}, |

842 | Description -> "BdZ coupling (right-handed)"}, |

843 | |

844 | KBsRz == { |

845 | ParameterType -> Internal, |

846 | BlockName -> Kappa, |

847 | ComplexParameter -> False, |

848 | Value -> (gw*Sqrt[zetaBsR*xibpz/gamma0bpz])/2/cw, |

849 | InteractionOrder -> {QED, 1}, |

850 | Description -> "BsZ coupling (right-handed)"}, |

851 | |

852 | KBbRz == { |

853 | ParameterType -> Internal, |

854 | BlockName -> Kappa, |

855 | ComplexParameter -> False, |

856 | Value -> (gw*Sqrt[zetaBbR*xibpz/gamma0bpz])/2/cw, |

857 | InteractionOrder -> {QED, 1}, |

858 | Description -> "BbZ coupling (right-handed)"}, |

859 | |

860 | KBdLh == { |

861 | ParameterType -> Internal, |

862 | BlockName -> Kappa, |

863 | ComplexParameter -> False, |

864 | Value -> (Sqrt[zetaBdL*xibph/gamma0bph]), |

865 | InteractionOrder -> {QED, 0}, |

866 | Description -> "BdH coupling (left-handed)"}, |

867 | |

868 | KBsLh == { |

869 | ParameterType -> Internal, |

870 | BlockName -> Kappa, |

871 | ComplexParameter -> False, |

872 | Value -> (Sqrt[zetaBsL*xibph/gamma0bph]), |

873 | InteractionOrder -> {QED, 0}, |

874 | Description -> "BsH coupling (left-handed)"}, |

875 | |

876 | KBbLh == { |

877 | ParameterType -> Internal, |

878 | BlockName -> Kappa, |

879 | ComplexParameter -> False, |

880 | Value -> (Sqrt[zetaBbL*xibph/gamma0bph]), |

881 | InteractionOrder -> {QED, 0}, |

882 | Description -> "BbH coupling (left-handed)"}, |

883 | |

884 | KBdRh == { |

885 | ParameterType -> Internal, |

886 | BlockName -> Kappa, |

887 | ComplexParameter -> False, |

888 | Value -> (Sqrt[zetaBdR*xibph/gamma0bph]), |

889 | InteractionOrder -> {QED, 0}, |

890 | Description -> "BdH coupling (right-handed)"}, |

891 | |

892 | KBsRh == { |

893 | ParameterType -> Internal, |

894 | BlockName -> Kappa, |

895 | ComplexParameter -> False, |

896 | Value -> (Sqrt[zetaBsR*xibph/gamma0bph]), |

897 | InteractionOrder -> {QED, 0}, |

898 | Description -> "BsH coupling (right-handed)"}, |

899 | |

900 | KBbRh == { |

901 | ParameterType -> Internal, |

902 | BlockName -> Kappa, |

903 | ComplexParameter -> False, |

904 | Value -> (Sqrt[zetaBbR*xibph/gamma0bph]), |

905 | InteractionOrder -> {QED, 0}, |

906 | Description -> "BbH coupling (right-handed)"}, |

907 | |

908 | (* Internal Width functions *) |

909 | |

910 | gamma0tpw == { |

911 | ParameterType -> Internal, |

912 | BlockName -> WIDTH, |

913 | ComplexParameter -> False, |

914 | Value -> (1-MW^2/MTP^2)*(1+MW^2/MTP^2-2*MW^4/MTP^4), |

915 | Description -> "T partial width for T>Wq (massless q)"}, |

916 | |

917 | gamma0tpz == { |

918 | ParameterType -> Internal, |

919 | BlockName -> WIDTH, |

920 | ComplexParameter -> False, |

921 | Value -> 1/2*(1-MZ^2/MTP^2)*(1+MZ^2/MTP^2-2*MZ^4/MTP^4), |

922 | Description -> "T partial width for T>Zq (massless q)"}, |

923 | |

924 | gamma0tph == { |

925 | ParameterType -> Internal, |

926 | BlockName -> WIDTH, |

927 | ComplexParameter -> False, |

928 | Value -> 1/2*(1-MH^2/MTP^2)^2, |

929 | Description -> "T partial width for T>Hq (massless q)"}, |

930 | |

931 | gamma0bpw == { |

932 | ParameterType -> Internal, |

933 | BlockName -> WIDTH, |

934 | ComplexParameter -> False, |

935 | Value -> (1-MW^2/MBP^2)*(1+MW^2/MBP^2-2*MW^4/MBP^4), |

936 | Description -> "B partial width for B>Wq (massless q)"}, |

937 | |

938 | gamma0bpz == { |

939 | ParameterType -> Internal, |

940 | BlockName -> WIDTH, |

941 | ComplexParameter -> False, |

942 | Value -> 1/2*(1-MZ^2/MBP^2)*(1+MZ^2/MBP^2-2*MZ^4/MBP^4), |

943 | Description -> "B partial width for B>Zq (massless q)"}, |

944 | |

945 | gamma0bph == { |

946 | ParameterType -> Internal, |

947 | BlockName -> WIDTH, |

948 | ComplexParameter -> False, |

949 | Value -> 1/2*(1-MH^2/MBP^2)^2, |

950 | Description -> "B partial width for B>Hq (massless q)"}, |

951 | |

952 | gamma0xw == { |

953 | ParameterType -> Internal, |

954 | BlockName -> WIDTH, |

955 | ComplexParameter -> False, |

956 | Value -> (1-MW^2/MX^2)*(1+MW^2/MX^2-2*MW^4/MX^4), |

957 | Description -> "X partial width for X>Wq (massless q)"}, |

958 | |

959 | gamma0yw == { |

960 | ParameterType -> Internal, |

961 | BlockName -> WIDTH, |

962 | ComplexParameter -> False, |

963 | Value -> (1-MW^2/MY^2)*(1+MW^2/MY^2-2*MW^4/MY^4), |

964 | Description -> "Y partial width for Y>Wq (massless q)"}} |

965 | |

966 | (************** Gauge Groups ******************) |

967 | |

968 | M$GaugeGroups = { |

969 | |

970 | U1Y == { |

971 | Abelian -> True, |

972 | GaugeBoson -> B, |

973 | Charge -> Y, |

974 | CouplingConstant -> g1}, |

975 | |

976 | SU2L == { |

977 | Abelian -> False, |

978 | GaugeBoson -> Wi, |

979 | StructureConstant -> Eps, |

980 | CouplingConstant -> gw}, |

981 | |

982 | SU3C == { |

983 | Abelian -> False, |

984 | GaugeBoson -> G, |

985 | StructureConstant -> f, |

986 | SymmetricTensor -> dSUN, |

987 | Representations -> {T, Colour}, |

988 | CouplingConstant -> gs} |

989 | } |

990 | |

991 | (********* Particle Classes **********) |

992 | |

993 | M$ClassesDescription = { |

994 | |

995 | (********** Fermions ************) |

996 | (* Leptons (neutrino): I_3 = +1/2, Q = 0 *) |

997 | F[1] == { |

998 | ClassName -> vl, |

999 | ClassMembers -> {ve,vm,vt}, |

1000 | FlavorIndex -> Generation, |

1001 | SelfConjugate -> False, |

1002 | Indices -> {Index[Generation]}, |

1003 | Mass -> 0, |

1004 | Width -> 0, |

1005 | QuantumNumbers -> {LeptonNumber -> 1}, |

1006 | PropagatorLabel -> {"v", "ve", "vm", "vt"} , |

1007 | PropagatorType -> S, |

1008 | PropagatorArrow -> Forward, |

1009 | PDG -> {12,14,16}, |

1010 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} }, |

1011 | |

1012 | (* Leptons (electron): I_3 = -1/2, Q = -1 *) |

1013 | F[2] == { |

1014 | ClassName -> l, |

1015 | ClassMembers -> {e, m, tt}, |

1016 | FlavorIndex -> Generation, |

1017 | SelfConjugate -> False, |

1018 | Indices -> {Index[Generation]}, |

1019 | Mass -> {Ml, {Me, 5.11 * 10^(-4)}, {MM, 0.10566}, {MTA, 1.777}}, |

1020 | Width -> 0, |

1021 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}, |

1022 | PropagatorLabel -> {"l", "e", "m", "tt"}, |

1023 | PropagatorType -> Straight, |

1024 | ParticleName -> {"e-", "m-", "tt-"}, |

1025 | AntiParticleName -> {"e+", "m+", "tt+"}, |

1026 | PropagatorArrow -> Forward, |

1027 | PDG -> {11, 13, 15}, |

1028 | FullName -> {"Electron", "Muon", "Tau"} }, |

1029 | |

1030 | (* Quarks (u): I_3 = +1/2, Q = +2/3 *) |

1031 | F[3] == { |

1032 | ClassMembers -> {u, c, t}, |

1033 | ClassName -> uq, |

1034 | FlavorIndex -> Generation, |

1035 | SelfConjugate -> False, |

1036 | Indices -> {Index[Generation], Index[Colour]}, |

1037 | Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.40}, {MT, 174.3}}, |

1038 | Width -> {0, 0, {WT, 1.51013490}}, |

1039 | QuantumNumbers -> {Q -> 2/3}, |

1040 | PropagatorLabel -> {"uq", "u", "c", "t"}, |

1041 | PropagatorType -> Straight, |

1042 | PropagatorArrow -> Forward, |

1043 | PDG -> {2, 4, 6}, |

1044 | FullName -> {"u-quark", "c-quark", "t-quark"}}, |

1045 | |

1046 | (* Quarks (d): I_3 = -1/2, Q = -1/3 *) |

1047 | F[4] == { |

1048 | ClassMembers -> {d, s, b}, |

1049 | ClassName -> dq, |

1050 | FlavorIndex -> Generation, |

1051 | SelfConjugate -> False, |

1052 | Indices -> {Index[Generation], Index[Colour]}, |

1053 | Mass -> {Md, {MD, 5.04*10^(-3)}, {MS, 0.101}, {MB, 4.2}}, |

1054 | Width -> 0, |

1055 | QuantumNumbers -> {Q -> -1/3}, |

1056 | PropagatorLabel -> {"dq", "d", "s", "b"}, |

1057 | PropagatorType -> Straight, |

1058 | PropagatorArrow -> Forward, |

1059 | PDG -> {1,3,5}, |

1060 | FullName -> {"d-quark", "s-quark", "b-quark"} }, |

1061 | |

1062 | (* VLQ Quarks X, Q=5/3*) |

1063 | F[5] == { |

1064 | ClassMembers -> {x}, |

1065 | ClassName -> xq, |

1066 | SelfConjugate -> False, |

1067 | Indices -> {Index[Colour]}, |

1068 | Mass -> {{MX,600}}, |

1069 | Width -> {{WX, 1}}, |

1070 | QuantumNumbers -> {Q -> 5/3}, |

1071 | PropagatorLabel -> {"x"}, |

1072 | PropagatorType -> Straight, |

1073 | PropagatorArrow -> Forward, |

1074 | PDG -> {6000005}, |

1075 | FullName -> {"X-quark"}}, |

1076 | |

1077 | (* VLQ Quarks T, Q=2/3 *) |

1078 | F[6] == { |

1079 | ClassName -> tpq, |

1080 | ClassMembers -> {tp}, |

1081 | SelfConjugate -> False, |

1082 | Indices -> {Index[Colour]}, |

1083 | Mass -> {{MTP,600}}, |

1084 | Width -> {{WTP,1}}, |

1085 | QuantumNumbers -> {Q -> 2/3}, |

1086 | PropagatorLabel -> {"tp"}, |

1087 | PropagatorType -> Straight, |

1088 | PropagatorArrow -> Forward, |

1089 | PDG -> {6000006}, |

1090 | FullName -> {"T-quark"}}, |

1091 | |

1092 | (* VLQ Quarks B, Q=-1/3 *) |

1093 | F[7] == { |

1094 | ClassName -> bpq, |

1095 | ClassMembers -> {bp}, |

1096 | SelfConjugate -> False, |

1097 | Indices -> {Index[Colour]}, |

1098 | Mass -> {{MBP,600}}, |

1099 | Width -> {{WBP, 1}}, |

1100 | QuantumNumbers -> {Q -> -1/3}, |

1101 | PropagatorLabel -> {"bp"}, |

1102 | PropagatorType -> Straight, |

1103 | PropagatorArrow -> Forward, |

1104 | PDG -> {6000007}, |

1105 | FullName -> {"B-quark"}}, |

1106 | |

1107 | (* VLQ Quarks Y, Q=-4/3 *) |

1108 | F[8] == { |

1109 | ClassMembers -> {y}, |

1110 | ClassName -> yq, |

1111 | SelfConjugate -> False, |

1112 | Indices -> {Index[Colour]}, |

1113 | Mass -> {{MY,600}}, |

1114 | Width -> {{WY, 1}}, |

1115 | QuantumNumbers -> {Q -> -4/3}, |

1116 | PropagatorLabel -> {"y"}, |

1117 | PropagatorType -> Straight, |

1118 | PropagatorArrow -> Forward, |

1119 | PDG -> {6000008}, |

1120 | FullName -> {"Y-quark"}}, |

1121 | |

1122 | (********** Ghosts **********) |

1123 | U[1] == { |

1124 | ClassName -> ghA, |

1125 | SelfConjugate -> False, |

1126 | Indices -> {}, |

1127 | Ghost -> A, |

1128 | Mass -> 0, |

1129 | QuantumNumbers -> {GhostNumber -> 1}, |

1130 | PropagatorLabel -> uA, |

1131 | PropagatorType -> GhostDash, |

1132 | PropagatorArrow -> Forward}, |

1133 | |

1134 | U[2] == { |

1135 | ClassName -> ghZ, |

1136 | SelfConjugate -> False, |

1137 | Indices -> {}, |

1138 | Mass -> {MZ, 91.1876}, |

1139 | Ghost -> Z, |

1140 | QuantumNumbers -> {GhostNumber -> 1}, |

1141 | PropagatorLabel -> uZ, |

1142 | PropagatorType -> GhostDash, |

1143 | PropagatorArrow -> Forward}, |

1144 | |

1145 | U[31] == { |

1146 | ClassName -> ghWp, |

1147 | SelfConjugate -> False, |

1148 | Indices -> {}, |

1149 | Mass -> {MW, Internal}, |

1150 | Ghost -> W, |

1151 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1}, |

1152 | PropagatorLabel -> uWp, |

1153 | PropagatorType -> GhostDash, |

1154 | PropagatorArrow -> Forward}, |

1155 | |

1156 | U[32] == { |

1157 | ClassName -> ghWm, |

1158 | SelfConjugate -> False, |

1159 | Indices -> {}, |

1160 | Mass -> {MW, Internal}, |

1161 | Ghost -> Wbar, |

1162 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1}, |

1163 | PropagatorLabel -> uWm, |

1164 | PropagatorType -> GhostDash, |

1165 | PropagatorArrow -> Forward}, |

1166 | |

1167 | U[4] == { |

1168 | ClassName -> ghG, |

1169 | SelfConjugate -> False, |

1170 | Indices -> {Index[Gluon]}, |

1171 | Ghost -> G, |

1172 | Mass -> 0, |

1173 | QuantumNumbers -> {GhostNumber -> 1}, |

1174 | PropagatorLabel -> uG, |

1175 | PropagatorType -> GhostDash, |

1176 | PropagatorArrow -> Forward}, |

1177 | |

1178 | U[5] == { |

1179 | ClassName -> ghWi, |

1180 | Unphysical -> True, |

1181 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2], |

1182 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I, |

1183 | ghWi[3] -> cw ghZ + sw ghA}, |

1184 | SelfConjugate -> False, |

1185 | Ghost -> Wi, |

1186 | Indices -> {Index[SU2W]}, |

1187 | FlavorIndex -> SU2W}, |

1188 | |

1189 | U[6] == { |

1190 | ClassName -> ghB, |

1191 | SelfConjugate -> False, |

1192 | Definitions -> {ghB -> -sw ghZ + cw ghA}, |

1193 | Indices -> {}, |

1194 | Ghost -> B, |

1195 | Unphysical -> True}, |

1196 | |

1197 | (************ Gauge Bosons ***************) |

1198 | (* Gauge bosons: Q = 0 *) |

1199 | V[1] == { |

1200 | ClassName -> A, |

1201 | SelfConjugate -> True, |

1202 | Indices -> {}, |

1203 | Mass -> 0, |

1204 | Width -> 0, |

1205 | PropagatorLabel -> "a", |

1206 | PropagatorType -> W, |

1207 | PropagatorArrow -> None, |

1208 | PDG -> 22, |

1209 | FullName -> "Photon" }, |

1210 | |

1211 | V[2] == { |

1212 | ClassName -> Z, |

1213 | SelfConjugate -> True, |

1214 | Indices -> {}, |

1215 | Mass -> {MZ, 91.1876}, |

1216 | Width -> {WZ, 2.44639985}, |

1217 | PropagatorLabel -> "Z", |

1218 | PropagatorType -> Sine, |

1219 | PropagatorArrow -> None, |

1220 | PDG -> 23, |

1221 | FullName -> "Z" }, |

1222 | |

1223 | (* Gauge bosons: Q = -1 *) |

1224 | V[3] == { |

1225 | ClassName -> W, |

1226 | SelfConjugate -> False, |

1227 | Indices -> {}, |

1228 | Mass -> {MW, Internal}, |

1229 | Width -> {WW, 2.03535570}, |

1230 | QuantumNumbers -> {Q -> 1}, |

1231 | PropagatorLabel -> "W", |

1232 | PropagatorType -> Sine, |

1233 | PropagatorArrow -> Forward, |

1234 | ParticleName ->"W+", |

1235 | AntiParticleName ->"W-", |

1236 | PDG -> 24, |

1237 | FullName -> "W" }, |

1238 | |

1239 | V[4] == { |

1240 | ClassName -> G, |

1241 | SelfConjugate -> True, |

1242 | Indices -> {Index[Gluon]}, |

1243 | Mass -> 0, |

1244 | Width -> 0, |

1245 | PropagatorLabel -> G, |

1246 | PropagatorType -> C, |

1247 | PropagatorArrow -> None, |

1248 | PDG -> 21, |

1249 | FullName -> "G" }, |

1250 | |

1251 | V[5] == { |

1252 | ClassName -> Wi, |

1253 | Unphysical -> True, |

1254 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2], |

1255 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I, |

1256 | Wi[mu_, 3] -> cw Z[mu] + sw A[mu]}, |

1257 | SelfConjugate -> True, |

1258 | Indices -> {Index[SU2W]}, |

1259 | FlavorIndex -> SU2W, |

1260 | Mass -> 0, |

1261 | PDG -> {1,2,3}}, |

1262 | |

1263 | V[6] == { |

1264 | ClassName -> B, |

1265 | SelfConjugate -> True, |

1266 | Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]}, |

1267 | Indices -> {}, |

1268 | Mass -> 0, |

1269 | Unphysical -> True}, |

1270 | |

1271 | |

1272 | (************ Scalar Fields **********) |

1273 | (* physical Higgs: Q = 0 *) |

1274 | S[1] == { |

1275 | ClassName -> H, |

1276 | SelfConjugate -> True, |

1277 | Mass -> {MH, 125}, |

1278 | Width -> {WH, 0.00679485838}, |

1279 | PropagatorLabel -> "H", |

1280 | PropagatorType -> D, |

1281 | PropagatorArrow -> None, |

1282 | PDG -> 25, |

1283 | TeXParticleName -> "\\phi", |

1284 | TeXClassName -> "\\phi", |

1285 | FullName -> "H" }, |

1286 | |

1287 | S[2] == { |

1288 | ClassName -> phi, |

1289 | SelfConjugate -> True, |

1290 | Mass -> {MZ, 91.5445065}, |

1291 | Width -> Wphi, |

1292 | PropagatorLabel -> "Phi", |

1293 | PropagatorType -> D, |

1294 | PropagatorArrow -> None, |

1295 | ParticleName ->"phi0", |

1296 | PDG -> 250, |

1297 | FullName -> "Phi", |

1298 | Goldstone -> Z }, |

1299 | |

1300 | S[3] == { |

1301 | ClassName -> phi2, |

1302 | SelfConjugate -> False, |

1303 | Mass -> {MW, Internal}, |

1304 | Width -> Wphi2, |

1305 | PropagatorLabel -> "Phi2", |

1306 | PropagatorType -> D, |

1307 | PropagatorArrow -> None, |

1308 | ParticleName ->"phi+", |

1309 | AntiParticleName ->"phi-", |

1310 | PDG -> 251, |

1311 | FullName -> "Phi2", |

1312 | TeXClassName -> "\\phi^+", |

1313 | TeXParticleName -> "\\phi^+", |

1314 | TeXAntiParticleName -> "\\phi^-", |

1315 | Goldstone -> W, |

1316 | QuantumNumbers -> {Q -> 1}} |

1317 | } |

1318 | |

1319 | |

1320 | (*****************************************************************************************) |

1321 | |

1322 | (* SM Lagrangian *) |

1323 | |

1324 | (******************** Gauge F^2 Lagrangian terms*************************) |

1325 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*) |

1326 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])* |

1327 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) - |

1328 | |

1329 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 - |

1330 | |

1331 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])* |

1332 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]); |

1333 | |

1334 | |

1335 | (********************* Fermion Lagrangian terms*************************) |

1336 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*) |

1337 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright}, |

1338 | |

1339 | Lkin = I uqbar.Ga[mu].del[uq, mu] + |

1340 | I dqbar.Ga[mu].del[dq, mu] + |

1341 | I lbar.Ga[mu].del[l, mu] + |

1342 | I vlbar.Ga[mu].del[vl, mu]; |

1343 | |

1344 | LQCD = gs (uqbar.Ga[mu].T[a].uq + |

1345 | dqbar.Ga[mu].T[a].dq)G[mu, a]; |

1346 | |

1347 | LBright = |

1348 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*) |

1349 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*) |

1350 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*) |

1351 | |

1352 | LBleft = |

1353 | -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl - (*Y_LL=-1*) |

1354 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*) |

1355 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*) |

1356 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*) |

1357 | |

1358 | LWleft = ee/sw/2( |

1359 | vlbar.Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*) |

1360 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*) |

1361 | |

1362 | Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] + |

1363 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+ |

1364 | |

1365 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*) |

1366 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*) |

1367 | |

1368 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] + |

1369 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu] |

1370 | ); |

1371 | |

1372 | Lkin + LQCD + LBright + LBleft + LWleft]; |

1373 | |

1374 | |

1375 | (** Note : Modifications to the SM W and Z currents should be considered here above **) |

1376 | |

1377 | (******************** Higgs Lagrangian terms****************************) |

1378 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}]; |

1379 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}]; |

1380 | |

1381 | |

1382 | |

1383 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi}, |

1384 | |

1385 | PMVec = Table[PauliSigma[i], {i, 3}]; |

1386 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]}; |

1387 | |

1388 | (*Y_phi=1*) |

1389 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f; |

1390 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec); |

1391 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2; |

1392 | |

1393 | (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]]; |

1394 | |

1395 | |

1396 | (*************** Yukawa Lagrangian***********************) |

1397 | LYuk := If[FeynmanGauge, |

1398 | |

1399 | Module[{s,r,n,m,i}, - |

1400 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) - |

1401 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2] - |

1402 | |

1403 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2] + (*This sign from eps matrix*) |

1404 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar) - |

1405 | |

1406 | yl[n] vlbar[s,n].ProjP[s,r].l[r,n] (-I phi2) - |

1407 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H +I phi)/Sqrt[2] |

1408 | ], |

1409 | |

1410 | Module[{s,r,n,m,i}, - |

1411 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] - |

1412 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] - |

1413 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2] |

1414 | ] |

1415 | ]; |

1416 | |

1417 | LYukawa := LYuk + HC[LYuk]; |

1418 | |

1419 | (** Note : Modifications to the SM H currents should be considered here above **) |

1420 | |

1421 | (**************Ghost terms**************************) |

1422 | (* Now we need the ghost terms which are of the form: *) |

1423 | (* - g * antighost * d_BRST G *) |

1424 | (* where d_BRST G is BRST transform of the gauge fixing function. *) |

1425 | |

1426 | LGhost := If[FeynmanGauge, |

1427 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB}, |

1428 | |

1429 | (***********First the pure gauge piece.**********************) |

1430 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]]; |

1431 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu]; |

1432 | |

1433 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ]; |

1434 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu]; |

1435 | |

1436 | dBRSTB[mu_] := cw/ee del[ghB, mu]; |

1437 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu]; |

1438 | |

1439 | (***********Next the piece from the scalar field.************) |

1440 | LGhostphi := - ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) + |

1441 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) - |

1442 | ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm ) - |

1443 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) - |

1444 | ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ; |

1445 | |

1446 | |

1447 | (***********Now add the pieces together.********************) |

1448 | LGhostG + LGhostWi + LGhostB + LGhostphi] |

1449 | |

1450 | , |

1451 | |

1452 | (*If unitary gauge, only include the gluonic ghost.*) |

1453 | Block[{dBRSTG,LGhostG}, |

1454 | |

1455 | (***********First the pure gauge piece.**********************) |

1456 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]]; |

1457 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu]; |

1458 | |

1459 | (***********Now add the pieces together.********************) |

1460 | LGhostG] |

1461 | |

1462 | ]; |

1463 | |

1464 | (*********SM Lagrangian*******) |

1465 | LSM := LGauge + LHiggs + LFermions + LYukawa + LGhost; |

1466 | |

1467 | |

1468 | (*********VLQ Lagrangians*******) |

1469 | (** We assume that the physical and mass eigenstates match for vector-like quarks **) |

1470 | |

1471 | (*********LT, EW interactions*******) |

1472 | |

1473 | LTW := |

1474 | +KT*KTuLw*(tpbar.W[mu].Ga[mu].ProjM.d)+KT*KTuRw*(tpbar.W[mu].Ga[mu].ProjP.d)+KT*KTuLw*(dbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTuRw*(dbar.Wbar[mu].Ga[mu].ProjP.tp)+KT*KTcLw*(tpbar.W[mu].Ga[mu].ProjM.s)+KT*KTcRw*(tpbar.W[mu].Ga[mu].ProjP.s)+KT*KTcLw*(sbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTcRw*(sbar.Wbar[mu].Ga[mu].ProjP.tp)+KT*KTtLw*(tpbar.W[mu].Ga[mu].ProjM.b)+KT*KTtRw*(tpbar.W[mu].Ga[mu].ProjP.b)+KT*KTtLw*(bbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTtRw*(bbar.Wbar[mu].Ga[mu].ProjP.tp); |

1475 | |

1476 | LTZ :=+KT*KTuLz*(tpbar.Z[mu].Ga[mu].ProjM.u)+KT*KTuRz*(tpbar.Z[mu].Ga[mu].ProjP.u)+KT*KTuLz*(ubar.Z[mu].Ga[mu].ProjM.tp)+KT*KTuRz*(ubar.Z[mu].Ga[mu].ProjP.tp)+KT*KTcLz*(tpbar.Z[mu].Ga[mu].ProjM.c)+KT*KTcRz*(tpbar.Z[mu].Ga[mu].ProjP.c)+KT*KTcLz*(cbar.Z[mu].Ga[mu].ProjM.tp)+KT*KTcRz*(cbar.Z[mu].Ga[mu].ProjP.tp)+KT*KTtLz*(tpbar.Z[mu].Ga[mu].ProjM.t)+KT*KTtRz*(tpbar.Z[mu].Ga[mu].ProjP.t)+KT*KTtLz*(tbar.Z[mu].Ga[mu].ProjM.tp)+KT*KTtRz*(tbar.Z[mu].Ga[mu].ProjP.tp); |

1477 | |

1478 | LTH:=-KT*MTP*KTuLh*(tpbar.H.ProjP.u)/v-KT*MTP*KTuLh*(ubar.H.ProjM.tp)/v-KT*MTP*KTuRh*(tpbar.H.ProjM.u)/v-KT*MTP*KTuRh*(ubar.H.ProjP.tp)/v-KT*MTP*KTcLh*(tpbar.H.ProjP.c)/v-KT*MTP*KTcLh*(cbar.H.ProjM.tp)/v-KT*MTP*KTcRh*(tpbar.H.ProjM.c)/v-KT*MTP*KTcRh*(cbar.H.ProjP.tp)/v-KT*MTP*KTtLh*(tpbar.H.ProjP.t)/v-KT*MTP*KTtLh*(tbar.H.ProjM.tp)/v-KT*MTP*KTtRh*(tpbar.H.ProjM.t)/v-KT*MTP*KTtRh*(tbar.H.ProjP.tp)/v; |

1479 | |

1480 | |

1481 | |

1482 | (*********LB, EW interactions*******) |

1483 | |

1484 | LBW :=+KB*KBdLw*(bpbar.Wbar[mu].Ga[mu].ProjM.u)+KB*KBdRw*(bpbar.Wbar[mu].Ga[mu].ProjP.u)+KB*KBdLw*(ubar.W[mu].Ga[mu].ProjM.bp)+KB*KBdRw*(ubar.W[mu].Ga[mu].ProjP.bp)+KB*KBsLw*(bpbar.Wbar[mu].Ga[mu].ProjM.c)+KB*KBsRw*(bpbar.Wbar[mu].Ga[mu].ProjP.c)+KB*KBsLw*(cbar.W[mu].Ga[mu].ProjM.bp)+KB*KBsRw*(cbar.W[mu].Ga[mu].ProjP.bp)+KB*KBbLw*(bpbar.Wbar[mu].Ga[mu].ProjM.t)+KB*KBbRw*(bpbar.Wbar[mu].Ga[mu].ProjP.t)+KB*KBbLw*(tbar.W[mu].Ga[mu].ProjM.bp)+KB*KBbRw*(tbar.W[mu].Ga[mu].ProjP.bp); |

1485 | |

1486 | LBZ := +KB*KBdLz*(bpbar.Z[mu].Ga[mu].ProjM.d)+KB*KBdRz*(bpbar.Z[mu].Ga[mu].ProjP.d)+KB*KBdLz*(dbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBdRz*(dbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBsLz*(bpbar.Z[mu].Ga[mu].ProjM.s)+KB*KBsRz*(bpbar.Z[mu].Ga[mu].ProjP.s)+KB*KBsLz*(sbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBsRz*(sbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBbLz*(bpbar.Z[mu].Ga[mu].ProjM.b)+KB*KBbRz*(bpbar.Z[mu].Ga[mu].ProjP.b)+KB*KBbLz*(bbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBbRz*(bbar.Z[mu].Ga[mu].ProjP.bp); |

1487 | |

1488 | LBH:=-KB*MBP*KBdLh*(bpbar.H.ProjP.d)/v-KB*MBP*KBdLh*(dbar.H.ProjM.bp)/v-KB*MBP*KBdRh*(bpbar.H.ProjM.d)/v-KB*MBP*KBdRh*(dbar.H.ProjP.bp)/v-KB*MBP*KBsLh*(bpbar.H.ProjP.s)/v-KB*MBP*KBsLh*(sbar.H.ProjM.bp)/v-KB*MBP*KBsRh*(bpbar.H.ProjM.s)/v-KB*MBP*KBsRh*(sbar.H.ProjP.bp)/v-KB*MBP*KBbLh*(bpbar.H.ProjP.b)/v-KB*MBP*KBbLh*(bbar.H.ProjM.bp)/v-KB*MBP*KBbRh*(bpbar.H.ProjM.b)/v-KB*MBP*KBbRh*(bbar.H.ProjP.bp)/v; |

1489 | |

1490 | (*********LX, EW interactions*******) |

1491 | |

1492 | |

1493 | LXW := |

1494 | KX*KXuL*(xbar.W[mu].Ga[mu].ProjM.u)+KX*KXuR*(xbar.W[mu].Ga[mu].ProjP.u)+KX*KXuL*(ubar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXuR*(ubar.Wbar[mu].Ga[mu].ProjP.x)+KX*KXcL*(xbar.W[mu].Ga[mu].ProjM.c)+KX*KXcR*(xbar.W[mu].Ga[mu].ProjP.c)+KX*KXcL*(cbar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXcR*(cbar.Wbar[mu].Ga[mu].ProjP.x)+KX*KXtL*(xbar.W[mu].Ga[mu].ProjM.t)+KX*KXtR*(xbar.W[mu].Ga[mu].ProjP.t)+KX*KXtL*(tbar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXtR*(tbar.Wbar[mu].Ga[mu].ProjP.x); |

1495 | |

1496 | |

1497 | |

1498 | (*********LY, EW interactions*******) |

1499 | |

1500 | LYW := |

1501 | +KY*KYdL*(ybar.Wbar[mu].Ga[mu].ProjM.d)+KY*KYdR*(ybar.Wbar[mu].Ga[mu].ProjP.d)+KY*KYdL*(dbar.W[mu].Ga[mu].ProjM.y)+KY*KYdR*(dbar.W[mu].Ga[mu].ProjP.y)+KY*KYsL*(ybar.Wbar[mu].Ga[mu].ProjM.s)+KY*KYsR*(ybar.Wbar[mu].Ga[mu].ProjP.s)+KY*KYsL*(sbar.W[mu].Ga[mu].ProjM.y)+KY*KYsR*(sbar.W[mu].Ga[mu].ProjP.y)+KY*KYbL*(ybar.Wbar[mu].Ga[mu].ProjM.b)+KY*KYbR*(ybar.Wbar[mu].Ga[mu].ProjP.b)+KY*KYbL*(bbar.W[mu].Ga[mu].ProjM.y)+KY*KYbR*(bbar.W[mu].Ga[mu].ProjP.y); |

1502 | |

1503 | |

1504 | (*********Kinetic, mass & QCD lagrangians for VLQ*******) |

1505 | |

1506 | LTK := I tpbar.Ga[mu].del[tp, mu]; |

1507 | LBK := I bpbar.Ga[mu].del[bp, mu]; |

1508 | LXK := I xbar.Ga[mu].del[x, mu]; |

1509 | LYK := I ybar.Ga[mu].del[y, mu]; |

1510 | |

1511 | LTM := -MTP.tpbar.tp; |

1512 | LBM := -MBP.bpbar.bp; |

1513 | LXM := -MX.xbar.x; |

1514 | LYM := -MY.ybar.y; |

1515 | |

1516 | |

1517 | LTG := gs (tpbar.Ga[mu].T[a].tp)G[mu, a]; |

1518 | LBG := gs (bpbar.Ga[mu].T[a].bp)G[mu, a]; |

1519 | LXG := gs (xbar.Ga[mu].T[a].x)G[mu, a]; |

1520 | LYG := gs (ybar.Ga[mu].T[a].y)G[mu, a]; |

1521 | |

1522 | |

1523 | LTA := 2*ee/3 (tpbar.Ga[mu].tp)A[mu]; |

1524 | LBA := -1*ee/3 (bpbar.Ga[mu].bp)A[mu]; |

1525 | LXA := 5*ee/3 (xbar.Ga[mu].x)A[mu]; |

1526 | LYA := -4*ee/3 (ybar.Ga[mu].y)A[mu]; |

1527 | |

1528 | |

1529 | LT := LTW + LTZ + LTH + LTK + LTM + LTG +LTA ; |

1530 | LB := LBW + LBZ + LBH + LBK + LBM + LBG +LBA ; |

1531 | LX := LXW + LXK + LXM + LXG + LXA ; |

1532 | LY := LYW + LYK + LYM + LYG + LYA ; |

1533 | |

1534 | LVLQ := LT + LB + LX + LY; |

1535 | |

1536 | |

1537 | |

1538 | (*********Total Lagrangian*******) |

1539 | |

1540 | L := LSM + LVLQ; |

1541 | |

1542 |