Sgluon pair production at the LHC with aMC@NLO
Validation figures

C. Degrande, B. Fuks, V. Hirschi,
J. Proudom & H.S. Shao

November 3, 2014
1 Simulation setup

Parton-level events have been simulated with the MadGraph5aMC@NLO program [1], using the UFO module [2] generated by making use of FeynRules [3] and NloCT [4]. Hard scattering elements have been generated from the interactions embedded in the Lagrangian

$$\mathcal{L}_8 = \frac{1}{2} D_\mu \sigma_8 D^\mu \sigma_8 - \frac{1}{2} m_8^2 \sigma_8 \sigma_8 + \frac{\hat{g}_8}{\Lambda} \sigma_8 G_{\mu\nu} G^{\mu\nu} + \sum_{q=u,d} \left[\sigma_8 \bar{q} (\hat{g}_L^q P_L + \hat{g}_R^q P_R) q + \text{h.c.} \right],$$

as indicated in Ref. [5] where more information can be found. We recall that this Lagrangian describes the dynamics of a sgluon field σ_8 of mass m_8 that is allowed to decay into quarks and gluons via the \hat{g} operators. We recall that the model is not suitable for single sgluon production at NLO. This requires to include, at tree-level, a complete basis of dimension-five operators to guarantee the cancellation, after renormalization, of all loop-induced ultraviolet divergences exhibiting a higher-dimensional Lorentz structure.

The numerical study presented in this document is based on of benchmark scenarios inspired by an R-symmetric supersymmetric setup where supersymmetry breaking induces non-minimal flavour violation in the squark sector [6]. The only non-vanishing coupling parameters are fixed to $\frac{\hat{g}_8}{\Lambda} = 1.5 \cdot 10^{-6}$ GeV$^{-1}$, $(\hat{g}_u^{L,R})_{3i} = (\hat{g}_d^{L,R})_{3i} = 3 \cdot 10^{-3}$ $\forall i = 1, 2, 3$.

We consider two benchmark points for which the sgluon mass is fixed to $m_8 = 500$ GeV and 1000 GeV. For each scenario, we have generated 10^6 events at the leading order accuracy and the same number at the next-to-leading order one. The generated samples are inclusive in the sgluon decays.

Sgluon decays have been achieved by using the MadSpin [7] package, and parton-level events generated in this way have then be showered and hadronized as implemented in the Pythia 8.2 program [8]. Hadronized events have then been processed with an anti-k_T algorithm with a radius parameter set to $R = 0.4$ [9], as implemented in the FastJet program [10].

From all the reconstructed jets, only those with a transverse-momentum $p_T > 20$ GeV and a pseudodrapidity $|\eta| < 2.5$ have been retained. In our analysis, we have also only considered leptons with $p_T > 10$ GeV and $|\eta| < 2.5$. Moreover, we have removed all leptons lying at an angular distance $\Delta R < 0.4$ of any selected jet. All the differential distributions presented here have been generated with MadAnalysis 5 [11], the normalization being fixed to an integrated luminosity of 100 fb$^{-1}$. In each figure, we indicate both the leading-order and next-to-leading results, as well as their ratio called K-factor (which is differential here).

2 Global event variables

We present in Figure 1 the missing energy distribution (left) and the total transverse hadronic activity (right) that are calculated as

$$H_T = \sum_{\text{hadronic particles}} |\vec{p}_T| \quad \text{and} \quad \vec{E}_T = \left(- \sum_{\text{visible particles}} \vec{p}_T \right),$$

where the sum are performed over all the event particles.

3 Zero lepton analysis

From the inclusively generated event sample, we select events which do not feature any final state electron or muon. We present in Figure 2 various distributions illustrating the properties of the two leading jets.
Figure 1: Global event variables: the missing transverse energy distribution (left) and the hadronic activity (right).

4 Single lepton analysis

From the inclusively generated event sample, we select events which feature exactly one final state electron or muon. We present in Figure 3 and Figure 4 various distributions illustrating the properties of the lepton and of the leading jets.

5 At-least-two-lepton analysis

From the inclusively generated event sample, we select events which feature at least two final state electrons or muons. We present in Figure 5, Figure 6 and Figure 7 various distributions illustrating the properties of the leptons and of the two leading jets.
Figure 2: Zero lepton signal region: jet properties.
Figure 3: Single lepton signal region: lepton and jet properties.
Figure 4: Single lepton signal region: lepton and jet properties (continued).
Figure 5: Multilepton signal region: lepton properties.
Figure 6: Multilepton signal region: jet properties.
Figure 7: Multilepton signal region: jet and lepton properties (continued).
References

