Changes between Version 3 and Version 4 of MSSM
 Timestamp:
 Feb 21, 2010 5:29:24 PM (8 years ago)
Legend:
 Unmodified
 Added
 Removed
 Modified

MSSM
v3 v4 11 11 One popular Beyond the Standard Model theory is the Minimal Supersymmetric Standard Model (MSSM). Its main features are to link bosons with fermions and unify internal and external symmetries. Moreover, it allows for a stabilization of the gap between the Planck and the electroweak scale and for gauge coupling unification at high energies, provides a dark matter candidate as the lightest supersymmetric particle and appears naturally in string theories. However, since supersymmetric particles have not yet been discovered, supersymmetry must be broken at low energies, which makes the superpartners massive in comparison to their Standard Model counterparts. 12 12 13 Our MSSM implementation in FeynRules is the most general one in a sense that it is keeping all the flavourviolating and helicitymixing terms in the Lagrangian and also all the possible additional CPviolating phases. This yields thus 105 new free parameters. In order to deal in a transparent way with all of those, our implementation will follow the commonly used universal set of conventions provided by the Supersymmetry Les Houches Accord, except for some minor points (see instructions below).13 Our MSSM implementation in !FeynRules is the most general one in a sense that it is keeping all the flavourviolating and helicitymixing terms in the Lagrangian and also all the possible additional CPviolating phases. This yields thus 105 new free parameters. In order to deal in a transparent way with all of those, our implementation will follow the commonly used universal set of conventions provided by the Supersymmetry Les Houches Accord, except for some minor points (see instructions below). 14 14 15 15 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+A+NILLES+AND+D+1983+and+j+phys+rept&FORMAT=www&SEQUENCE= Phys.Rept.110 (1984) 1]: H. P. Nilles, ''Supersymmetry, Supergravity and Particle Physics''. 16 16 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+A+HABER+AND+A+KANE+AND+D+1984+and+j+phys+rept&FORMAT=www&SEQUENCE= Phys.Rept.117 (1985) 75]: H. E. Haber and G. L. Kane, ''The Search for Supersymmetry: Probing Physics Beyond the Standard Model.'' 17 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=a+rosiek+and+t+Complete+Set+of+Feynman+Rules&FORMAT=WWW&SEQUENCE= Phys.Rev.D41 (1990) 3464]: J. Rosiek, ''Complete Set of Feynman Rules for the Minimal Supersymmetric Extension of the Standard Model.'' <em><br /></em>17 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=a+rosiek+and+t+Complete+Set+of+Feynman+Rules&FORMAT=WWW&SEQUENCE= Phys.Rev.D41 (1990) 3464]: J. Rosiek, ''Complete Set of Feynman Rules for the Minimal Supersymmetric Extension of the Standard Model.'' 18 18 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=t+susy+primer&FORMAT=WWW&SEQUENCE= hepph/9709356]: S. P. Martin, ''A Supersymmetry primer.'' 19 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+T+SUSY+LES+HOUCHES+and+j+JHEP&FORMAT=www&SEQUENCE= JHEP 0407 (2004) 36]: P. Skands ''et al,'', ''SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators'' ''.'' <em><br /></em>19 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+T+SUSY+LES+HOUCHES+and+j+JHEP&FORMAT=www&SEQUENCE= JHEP 0407 (2004) 36]: P. Skands ''et al,'', ''SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators'' ''.'' 20 20 * [http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+T+SUSY+LES+HOUCHES+and+j+comput+phys+commun&FORMAT=www&SEQUENCE= Comput.Phys.Commun.180 (2009) 8]: B. C. Allanach ''et al,'', ''SUSY Les Houches Accord 2.'' 21 21 === Model files & extensions ===