# VLQ: VLQ_Chromomagnetic.fr

File VLQ_Chromomagnetic.fr, 51.8 KB (added by buchkremer, 7 years ago) |
---|

Line | |
---|---|

1 | (***************************************************************************************************************) |

2 | (****** FeynRules mod-file for Model Independent searches of top partners ******) |

3 | (****** X(5/3), T(2/3), B(-1/3) & Y(-4/3) with arbitrary couplings ******) |

4 | (****** ******) |

5 | (****** Authors: M. Buchkremer, G. Cacciapaglia, A. Deandrea, L. Panizzi ******) |

6 | (****** ******) |

7 | (****** ******) |

8 | (****** ******) |

9 | (****** Choose whether Feynman gauge is desired. ******) |

10 | (****** If set to False, unitary gauge is assumed. ******) |

11 | (****** Feynman gauge is to be used for CalcHEP/CompHEP (calculation is 10-100 times faster) . ******) |

12 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ******) |

13 | (****** Set FeynmanGauge = False for UFO outputs ******) |

14 | (***************************************************************************************************************) |

15 | |

16 | (***************** This is the FeynRules model file for the gluon chromomagnetic coupling Qqg **********) |

17 | |

18 | M$ModelName = "VLQ_Chromomagnetic"; |

19 | |

20 | |

21 | M$Information = {Authors -> {"M. Buchkremer","G. Cacciapaglia","A. Deandrea","L. Panizzi"}, |

22 | Version -> "1.2.5", |

23 | Date -> "10. 04. 2013", |

24 | Institutions -> {"Universite catholique de Louvain (CP3)", "Universite de Lyon (CNRS/IN2P3)","University of Southampton (School of Physics and Astronomy)"}, |

25 | Emails -> {"mathieu.buchkremer@uclouvain.be", "g.cacciapaglia@ipnl.in2p3.fr","deandrea@ipnl.in2p3.fr", "l.panizzi@soton.ac.uk"}}; |

26 | |

27 | |

28 | (******* Index definitions ********) |

29 | |

30 | IndexRange[ Index[Generation] ] = Range[3] |

31 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]] |

32 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]] |

33 | IndexRange[ Index[SU2W] ] = Unfold[Range[3]] |

34 | IndexStyle[Colour, i] |

35 | IndexStyle[Generation, f] |

36 | IndexStyle[GenerationU, U] |

37 | IndexStyle[GenerationD, D] |

38 | IndexStyle[Gluon ,a] |

39 | IndexStyle[SU2W ,k] |

40 | |

41 | (* Fixed parameter for the CKM sector (only one new vector-like partner) *) |

42 | |

43 | (******* Gauge parameters (for FeynArts) ********) |

44 | |

45 | GaugeXi[ V[1] ] = GaugeXi[A]; |

46 | GaugeXi[ V[2] ] = GaugeXi[Z]; |

47 | GaugeXi[ V[3] ] = GaugeXi[W]; |

48 | GaugeXi[ V[4] ] = GaugeXi[G]; |

49 | GaugeXi[ S[1] ] = 1; |

50 | GaugeXi[ S[2] ] = GaugeXi[Z]; |

51 | GaugeXi[ S[3] ] = GaugeXi[W]; |

52 | GaugeXi[ U[1] ] = GaugeXi[A]; |

53 | GaugeXi[ U[2] ] = GaugeXi[Z]; |

54 | GaugeXi[ U[31] ] = GaugeXi[W]; |

55 | GaugeXi[ U[32] ] = GaugeXi[W]; |

56 | GaugeXi[ U[4] ] = GaugeXi[G]; |

57 | |

58 | |

59 | (**************** Parameters *************) |

60 | |

61 | M$Parameters = { |

62 | |

63 | (* External parameters *) |

64 | |

65 | \[Alpha]EWM1== { |

66 | ParameterType -> External, |

67 | BlockName -> SMINPUTS, |

68 | ParameterName -> aEWM1, |

69 | InteractionOrder -> {QED, -2}, |

70 | Value -> 127.9, |

71 | Description -> "Inverse of the electroweak coupling constant"}, |

72 | |

73 | Gf == { |

74 | ParameterType -> External, |

75 | BlockName -> SMINPUTS, |

76 | TeX -> Subscript[G, f], |

77 | InteractionOrder -> {QED, 2}, |

78 | Value -> 1.16600 * 10^(-5), |

79 | Description -> "Fermi constant"}, |

80 | |

81 | \[Alpha]S == { |

82 | ParameterType -> External, |

83 | BlockName -> SMINPUTS, |

84 | TeX -> Subscript[\[Alpha], s], |

85 | ParameterName -> aS, |

86 | InteractionOrder -> {QCD, 2}, |

87 | Value -> 0.118, |

88 | Description -> "Strong coupling constant at the Z pole."}, |

89 | |

90 | ymdo == { |

91 | ParameterType -> External, |

92 | BlockName -> YUKAWA, |

93 | Value -> 5.04*10^(-3), |

94 | OrderBlock -> {1}, |

95 | Description -> "Down Yukawa mass"}, |

96 | |

97 | |

98 | ymup == { |

99 | ParameterType -> External, |

100 | BlockName -> YUKAWA, |

101 | Value -> 2.55*10^(-3), |

102 | OrderBlock -> {2}, |

103 | Description -> "Up Yukawa mass"}, |

104 | |

105 | yms == { |

106 | ParameterType -> External, |

107 | BlockName -> YUKAWA, |

108 | Value -> 0.101, |

109 | OrderBlock -> {3}, |

110 | Description -> "Strange Yukawa mass"}, |

111 | |

112 | |

113 | ymc == { |

114 | ParameterType -> External, |

115 | BlockName -> YUKAWA, |

116 | Value -> 1.25, |

117 | OrderBlock -> {4}, |

118 | Description -> "Charm Yukawa mass"}, |

119 | |

120 | ymb == { |

121 | ParameterType -> External, |

122 | BlockName -> YUKAWA, |

123 | Value -> 4.2, |

124 | OrderBlock -> {5}, |

125 | Description -> "Bottom Yukawa mass"}, |

126 | |

127 | ymt == { |

128 | ParameterType -> External, |

129 | BlockName -> YUKAWA, |

130 | Value -> 174.3, |

131 | OrderBlock -> {6}, |

132 | Description -> "Top Yukawa mass"}, |

133 | |

134 | yme == { |

135 | ParameterType -> External, |

136 | BlockName -> YUKAWA, |

137 | Value -> 5.11*10^(-4), |

138 | OrderBlock -> {11}, |

139 | Description -> "Electron Yukawa mass"}, |

140 | |

141 | ymm == { |

142 | ParameterType -> External, |

143 | BlockName -> YUKAWA, |

144 | Value -> 0.10566, |

145 | OrderBlock -> {13}, |

146 | Description -> "Muon Yukawa mass"}, |

147 | |

148 | ymtau == { |

149 | ParameterType -> External, |

150 | BlockName -> YUKAWA, |

151 | Value -> 1.777, |

152 | OrderBlock -> {15}, |

153 | Description -> "Tau Yukawa mass"}, |

154 | |

155 | yx == { |

156 | ParameterType -> External, |

157 | BlockName -> YUKAWA, |

158 | ComplexParameter -> False, |

159 | Value -> 600, |

160 | Description -> "X mass"}, |

161 | |

162 | ytp == { |

163 | ParameterType -> External, |

164 | BlockName -> YUKAWA, |

165 | ComplexParameter -> False, |

166 | Value -> 600, |

167 | Description -> "T mass"}, |

168 | |

169 | ybp == { |

170 | ParameterType -> External, |

171 | BlockName -> YUKAWA, |

172 | ComplexParameter -> False, |

173 | Value -> 600, |

174 | Description -> "B mass"}, |

175 | |

176 | yy == { |

177 | ParameterType -> External, |

178 | BlockName -> YUKAWA, |

179 | ComplexParameter -> False, |

180 | Value -> 600, |

181 | Description -> "Y mass"}, |

182 | |

183 | KX == { |

184 | ParameterType -> External, |

185 | BlockName -> KAPPA, |

186 | ComplexParameter -> False, |

187 | Value -> 0, |

188 | Description -> "Kappa_X parameter"}, |

189 | |

190 | KT == { |

191 | ParameterType -> External, |

192 | BlockName -> KAPPA, |

193 | ComplexParameter -> False, |

194 | Value -> 0, |

195 | Description -> "Kappa_T parameter"}, |

196 | |

197 | KB == { |

198 | ParameterType -> External, |

199 | BlockName -> KAPPA, |

200 | ComplexParameter -> False, |

201 | Value -> 0, |

202 | Description -> "Kappa_B parameter"}, |

203 | |

204 | KY == { |

205 | ParameterType -> External, |

206 | BlockName -> KAPPA, |

207 | ComplexParameter -> False, |

208 | Value -> 0, |

209 | Description -> "Kappa_Y parameter"}, |

210 | |

211 | KG == { |

212 | ParameterType -> External, |

213 | BlockName -> KAPPA, |

214 | ComplexParameter -> False, |

215 | Value -> 0, |

216 | Description -> "Kappa_G parameter"}, |

217 | |

218 | xitpw == { |

219 | ParameterType -> External, |

220 | BlockName -> XI, |

221 | ComplexParameter -> False, |

222 | Value -> 0, |

223 | Description -> "Branching ratio of T in W"}, |

224 | |

225 | xitpz == { |

226 | ParameterType -> External, |

227 | BlockName -> XI, |

228 | ComplexParameter -> False, |

229 | Value -> 0, |

230 | Description -> "Branching ratio of T in Z"}, |

231 | |

232 | xitph == { |

233 | ParameterType -> External, |

234 | BlockName -> XI, |

235 | ComplexParameter -> False, |

236 | Value -> 0, |

237 | Description -> "Branching ratio of T in H"}, |

238 | |

239 | xibpw == { |

240 | ParameterType -> External, |

241 | BlockName -> XI, |

242 | ComplexParameter -> False, |

243 | Value -> 0, |

244 | Description -> "Branching ratio of B in W"}, |

245 | |

246 | xibpz == { |

247 | ParameterType -> External, |

248 | BlockName -> XI, |

249 | ComplexParameter -> False, |

250 | Value -> 0, |

251 | Description -> "Branching ratio of B in Z"}, |

252 | |

253 | xibph == { |

254 | ParameterType -> External, |

255 | BlockName -> XI, |

256 | ComplexParameter -> False, |

257 | Value -> 0, |

258 | Description -> "Branching ratio of B in H"}, |

259 | |

260 | zetauL == { |

261 | ParameterType -> External, |

262 | BlockName -> ZETA, |

263 | ComplexParameter -> False, |

264 | Value -> 0, |

265 | Description -> "T-u mixing (left-handed)"}, |

266 | |

267 | zetacL == { |

268 | ParameterType -> External, |

269 | BlockName -> ZETA, |

270 | ComplexParameter -> False, |

271 | Value -> 0, |

272 | Description -> "T-c mixing (left-handed)"}, |

273 | |

274 | zetatL == { |

275 | ParameterType -> External, |

276 | BlockName -> ZETA, |

277 | ComplexParameter -> False, |

278 | Value -> 0, |

279 | Description -> "T-t mixing (left-handed)"}, |

280 | |

281 | zetadL == { |

282 | ParameterType -> External, |

283 | BlockName -> ZETA, |

284 | ComplexParameter -> False, |

285 | Value -> 0, |

286 | Description -> "B-d mixing (left-handed)"}, |

287 | |

288 | zetasL == { |

289 | ParameterType -> External, |

290 | BlockName -> ZETA, |

291 | ComplexParameter -> False, |

292 | Value -> 0, |

293 | Description -> "B-s mixing (left-handed)"}, |

294 | |

295 | zetabL == { |

296 | ParameterType -> External, |

297 | BlockName -> ZETA, |

298 | ComplexParameter -> False, |

299 | Value -> 0, |

300 | Description -> "B-b mixing (left-handed)"}, |

301 | |

302 | zetauR == { |

303 | ParameterType -> External, |

304 | BlockName -> ZETA, |

305 | ComplexParameter -> False, |

306 | Value -> 0, |

307 | Description -> "T-u mixing (right-handed)"}, |

308 | |

309 | zetacR == { |

310 | ParameterType -> External, |

311 | BlockName -> ZETA, |

312 | ComplexParameter -> False, |

313 | Value -> 0, |

314 | Description -> "T-c mixing (right-handed)"}, |

315 | |

316 | zetatR == { |

317 | ParameterType -> External, |

318 | BlockName -> ZETA, |

319 | ComplexParameter -> False, |

320 | Value -> 0, |

321 | Description -> "T-t mixing (right-handed)"}, |

322 | |

323 | zetadR == { |

324 | ParameterType -> External, |

325 | BlockName -> ZETA, |

326 | ComplexParameter -> False, |

327 | Value -> 0, |

328 | Description -> "B-d mixing (right-handed)"}, |

329 | |

330 | zetasR == { |

331 | ParameterType -> External, |

332 | BlockName -> ZETA, |

333 | ComplexParameter -> False, |

334 | Value -> 0, |

335 | Description -> "B-s mixing (right-handed)"}, |

336 | |

337 | zetabR == { |

338 | ParameterType -> External, |

339 | BlockName -> ZETA, |

340 | ComplexParameter -> False, |

341 | Value -> 0, |

342 | Description -> "B-b mixing (right-handed)"}, |

343 | |

344 | CKM == { |

345 | ParameterType -> External, |

346 | BlockName -> CKMBlock, |

347 | ComplexParameter -> False, |

348 | Indices -> {Index[Generation], Index[Generation]}, |

349 | TensorClass -> CKM, |

350 | Unitary -> True, |

351 | Value -> {CKM[1,1] -> 0.97428, |

352 | CKM[1,2] -> 0.2253, |

353 | CKM[1,3] -> 0.00347, |

354 | CKM[2,1] -> 0.2252, |

355 | CKM[2,2] -> 0.97345, |

356 | CKM[2,3] -> 0.0410, |

357 | CKM[3,1] -> 0.00862, |

358 | CKM[3,2] -> 0.0403, |

359 | CKM[3,3] -> 0.999152}, |

360 | Description -> "SM CKM Matrix"}, |

361 | |

362 | |

363 | (* Internal Parameters *) |

364 | |

365 | \[Alpha]EW == { |

366 | ParameterType -> Internal, |

367 | Value -> 1/\[Alpha]EWM1, |

368 | TeX -> Subscript[\[Alpha], EW], |

369 | ParameterName -> aEW, |

370 | InteractionOrder -> {QED, 2}, |

371 | Description -> "Electroweak coupling contant"}, |

372 | |

373 | |

374 | MW == { |

375 | ParameterType -> Internal, |

376 | Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]], |

377 | TeX -> Subscript[M, W], |

378 | Description -> "W mass"}, |

379 | |

380 | sw2 == { |

381 | ParameterType -> Internal, |

382 | Value -> 1-(MW/MZ)^2, |

383 | Description -> "Squared Sin of the Weinberg angle"}, |

384 | |

385 | ee == { |

386 | TeX -> e, |

387 | ParameterType -> Internal, |

388 | Value -> Sqrt[4 Pi \[Alpha]EW], |

389 | InteractionOrder -> {QED, 1}, |

390 | Description -> "Electric coupling constant"}, |

391 | |

392 | cw == { |

393 | TeX -> Subscript[c, w], |

394 | ParameterType -> Internal, |

395 | Value -> Sqrt[1 - sw2], |

396 | Description -> "Cos of the Weinberg angle"}, |

397 | |

398 | sw == { |

399 | TeX -> Subscript[s, w], |

400 | ParameterType -> Internal, |

401 | Value -> Sqrt[sw2], |

402 | Description -> "Sin of the Weinberg angle"}, |

403 | |

404 | gw == { |

405 | TeX -> Subscript[g, w], |

406 | ParameterType -> Internal, |

407 | Value -> ee / sw, |

408 | InteractionOrder -> {QED, 1}, |

409 | Description -> "Weak coupling constant"}, |

410 | |

411 | g1 == { |

412 | TeX -> Subscript[g, 1], |

413 | ParameterType -> Internal, |

414 | Value -> ee / cw, |

415 | InteractionOrder -> {QED, 1}, |

416 | Description -> "U(1)Y coupling constant"}, |

417 | |

418 | gs == { |

419 | TeX -> Subscript[g, s], |

420 | ParameterType -> Internal, |

421 | Value -> Sqrt[4 Pi \[Alpha]S], |

422 | InteractionOrder -> {QCD, 1}, |

423 | ParameterName -> G, |

424 | Description -> "Strong coupling constant"}, |

425 | |

426 | v == { |

427 | ParameterType -> Internal, |

428 | Value -> 2*MW*sw/ee, |

429 | InteractionOrder -> {QED, -1}, |

430 | Description -> "Higgs VEV"}, |

431 | |

432 | \[Lambda] == { |

433 | ParameterType -> Internal, |

434 | Value -> MH^2/(2*v^2), |

435 | InteractionOrder -> {QED, 2}, |

436 | ParameterName -> lam, |

437 | Description -> "Higgs quartic coupling"}, |

438 | |

439 | muH == { |

440 | ParameterType -> Internal, |

441 | Value -> Sqrt[v^2 \[Lambda]], |

442 | TeX -> \[Mu], |

443 | Description -> "Coefficient of the quadratic piece of the Higgs potential"}, |

444 | |

445 | yl == { |

446 | TeX -> Superscript[y, l], |

447 | Indices -> {Index[Generation]}, |

448 | AllowSummation -> True, |

449 | ParameterType -> Internal, |

450 | Value -> {yl[1] -> Sqrt[2] yme / v, yl[2] -> Sqrt[2] ymm / v, yl[3] -> Sqrt[2] ymtau / v}, |

451 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau}, |

452 | InteractionOrder -> {QED, 1}, |

453 | ComplexParameter -> False, |

454 | Description -> "Lepton Yukawa coupling"}, |

455 | |

456 | yu == { |

457 | TeX -> Superscript[y, u], |

458 | Indices -> {Index[Generation]}, |

459 | AllowSummation -> True, |

460 | ParameterType -> Internal, |

461 | Value -> {yu[1] -> Sqrt[2] ymup / v, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v}, |

462 | ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt}, |

463 | InteractionOrder -> {QED, 1}, |

464 | ComplexParameter -> False, |

465 | Description -> "U-quark Yukawa coupling"}, |

466 | |

467 | yd == { |

468 | TeX -> Superscript[y, d], |

469 | Indices -> {Index[Generation]}, |

470 | AllowSummation -> True, |

471 | ParameterType -> Internal, |

472 | Value -> {yd[1] -> Sqrt[2] ymdo / v, yd[2] -> Sqrt[2] yms / v, yd[3] -> Sqrt[2] ymb / v}, |

473 | ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb}, |

474 | InteractionOrder -> {QED, 1}, |

475 | ComplexParameter -> False, |

476 | Description -> "D-quark Yukawa coupling"}, |

477 | |

478 | gamma0tpw == { |

479 | ParameterType -> Internal, |

480 | BlockName -> WIDTH, |

481 | ComplexParameter -> False, |

482 | Value -> (1-MW^2/MTP^2)*(1+MW^2/MTP^2-2*MW^4/MTP^4), |

483 | Description -> "T partial width for T>Wq (massless q)"}, |

484 | |

485 | gamma0tpz == { |

486 | ParameterType -> Internal, |

487 | BlockName -> WIDTH, |

488 | ComplexParameter -> False, |

489 | Value -> 1/2*(1-MZ^2/MTP^2)*(1+MZ^2/MTP^2-2*MZ^4/MTP^4), |

490 | Description -> "T partial width for T>Zq (massless q)"}, |

491 | |

492 | gamma0tph == { |

493 | ParameterType -> Internal, |

494 | BlockName -> WIDTH, |

495 | ComplexParameter -> False, |

496 | Value -> 1/2*(1-MH^2/MTP^2)^2, |

497 | Description -> "T partial width for T>Hq (massless q)"}, |

498 | |

499 | |

500 | gamma0bpw == { |

501 | ParameterType -> Internal, |

502 | BlockName -> WIDTH, |

503 | ComplexParameter -> False, |

504 | Value -> (1-MW^2/MBP^2)*(1+MW^2/MBP^2-2*MW^4/MBP^4), |

505 | Description -> "B partial width for B>Wq (massless q)"}, |

506 | |

507 | |

508 | gamma0bpz == { |

509 | ParameterType -> Internal, |

510 | BlockName -> WIDTH, |

511 | ComplexParameter -> False, |

512 | Value -> 1/2*(1-MZ^2/MBP^2)*(1+MZ^2/MBP^2-2*MZ^4/MBP^4), |

513 | Description -> "B partial width for B>Zq (massless q)"}, |

514 | |

515 | |

516 | gamma0bph == { |

517 | ParameterType -> Internal, |

518 | BlockName -> WIDTH, |

519 | ComplexParameter -> False, |

520 | Value -> 1/2*(1-MH^2/MBP^2)^2, |

521 | Description -> "B partial width for B>Hq (massless q)"}, |

522 | |

523 | |

524 | gamma0xw == { |

525 | ParameterType -> Internal, |

526 | BlockName -> WIDTH, |

527 | ComplexParameter -> False, |

528 | Value -> (1-MW^2/MX^2)*(1+MW^2/MX^2-2*MW^4/MX^4), |

529 | Description -> "X partial width for X>Wq (massless q)"}, |

530 | |

531 | |

532 | gamma0yw == { |

533 | ParameterType -> Internal, |

534 | BlockName -> WIDTH, |

535 | ComplexParameter -> False, |

536 | Value -> (1-MW^2/MY^2)*(1+MW^2/MY^2-2*MW^4/MY^4), |

537 | Description -> "Y partial width for Y>Wq (massless q)"}, |

538 | |

539 | |

540 | fuL == {ParameterType -> External, |

541 | BlockName -> GLUON, |

542 | ComplexParameter -> False, |

543 | Description -> "T-u-g LH coupling", |

544 | Value -> 0}, |

545 | |

546 | fuR == {ParameterType -> External, |

547 | BlockName -> GLUON, |

548 | ComplexParameter -> False, |

549 | Description -> "T-u-g RH coupling", |

550 | Value -> 0}, |

551 | |

552 | fcL == {ParameterType -> External, |

553 | BlockName -> GLUON, |

554 | ComplexParameter -> False, |

555 | Description -> "T-c-g LH coupling", |

556 | Value -> 0}, |

557 | |

558 | fcR == {ParameterType -> External, |

559 | BlockName -> GLUON, |

560 | ComplexParameter -> False, |

561 | Description -> "T-c-g RH coupling", |

562 | Value -> 0}, |

563 | |

564 | ftL == {ParameterType -> External, |

565 | BlockName -> GLUON, |

566 | ComplexParameter -> False, |

567 | Description -> "T-t-g LH coupling", |

568 | Value -> 0}, |

569 | |

570 | ftR == {ParameterType -> External, |

571 | BlockName -> GLUON, |

572 | ComplexParameter -> False, |

573 | Description -> "T-t-g RH coupling", |

574 | Value -> 0}, |

575 | |

576 | fdL == {ParameterType -> External, |

577 | BlockName -> GLUON, |

578 | ComplexParameter -> False, |

579 | Description -> "B-d-g LH coupling", |

580 | Value -> 0}, |

581 | |

582 | fdR == {ParameterType -> External, |

583 | BlockName -> GLUON, |

584 | ComplexParameter -> False, |

585 | Description -> "B-d-g RH coupling", |

586 | Value -> 0}, |

587 | |

588 | fsL == {ParameterType -> External, |

589 | BlockName -> GLUON, |

590 | ComplexParameter -> False, |

591 | Description -> "B-s-g LH coupling", |

592 | Value -> 0}, |

593 | |

594 | fsR == {ParameterType -> External, |

595 | BlockName -> GLUON, |

596 | ComplexParameter -> False, |

597 | Description -> "B-s-g RH coupling", |

598 | Value -> 0}, |

599 | |

600 | fbL == {ParameterType -> External, |

601 | BlockName -> GLUON, |

602 | ComplexParameter -> False, |

603 | Description -> "B-b-g LH coupling", |

604 | Value -> 0}, |

605 | |

606 | fbR == {ParameterType -> External, |

607 | BlockName -> GLUON, |

608 | ComplexParameter -> False, |

609 | Description -> "B-b-g RH coupling", |

610 | Value -> 0}, |

611 | |

612 | Lambda == {ParameterType -> External, |

613 | BlockName -> GLUON, |

614 | ComplexParameter -> False, |

615 | Description -> "NP scale of the chromomagnetic D=6 operator", |

616 | Value -> 600}, |

617 | |

618 | KXuL == { |

619 | ParameterType -> Internal, |

620 | BlockName -> KAPPA, |

621 | ComplexParameter -> False, |

622 | Value -> (ee/sw*Sqrt[zetauL/gamma0xw])/Sqrt[2], |

623 | InteractionOrder -> {QED, 1}, |

624 | Description -> "XuW coupling (left-handed)"}, |

625 | |

626 | KXuR == { |

627 | ParameterType -> Internal, |

628 | BlockName -> KAPPA, |

629 | ComplexParameter -> False, |

630 | Value -> (ee/sw*Sqrt[zetauR/gamma0xw])/Sqrt[2], |

631 | InteractionOrder -> {QED, 1}, |

632 | Description -> "XuW coupling (right-handed)"}, |

633 | |

634 | KXcL == { |

635 | ParameterType -> Internal, |

636 | BlockName -> KAPPA, |

637 | ComplexParameter -> False, |

638 | Value -> (ee/sw*Sqrt[zetacL/gamma0xw])/Sqrt[2], |

639 | InteractionOrder -> {QED, 1}, |

640 | Description -> "XcW coupling (left-handed)"}, |

641 | |

642 | |

643 | KXcR == { |

644 | ParameterType -> Internal, |

645 | BlockName -> KAPPA, |

646 | ComplexParameter -> False, |

647 | Value -> (ee/sw*Sqrt[zetacR/gamma0xw])/Sqrt[2], |

648 | InteractionOrder -> {QED, 1}, |

649 | Description -> "XcW coupling (right-handed)"}, |

650 | |

651 | |

652 | KXtL == { |

653 | ParameterType -> Internal, |

654 | BlockName -> KAPPA, |

655 | ComplexParameter -> False, |

656 | Value -> (ee/sw*Sqrt[zetatL/gamma0xw])/Sqrt[2], |

657 | InteractionOrder -> {QED, 1}, |

658 | Description -> "XtW coupling (left-handed)"}, |

659 | |

660 | |

661 | KXtR == { |

662 | ParameterType -> Internal, |

663 | BlockName -> KAPPA, |

664 | ComplexParameter -> False, |

665 | Value -> (ee/sw*Sqrt[zetatR/gamma0xw])/Sqrt[2], |

666 | InteractionOrder -> {QED, 1}, |

667 | Description -> "XtW coupling (right-handed)"}, |

668 | |

669 | |

670 | KYdL == { |

671 | ParameterType -> Internal, |

672 | BlockName -> KAPPA, |

673 | ComplexParameter -> False, |

674 | Value -> (ee/sw*Sqrt[zetadL/gamma0yw])/Sqrt[2], |

675 | InteractionOrder -> {QED, 1}, |

676 | Description -> "YdW coupling (left-handed)"}, |

677 | |

678 | |

679 | KYdR == { |

680 | ParameterType -> Internal, |

681 | BlockName -> KAPPA, |

682 | ComplexParameter -> False, |

683 | Value -> (ee/sw*Sqrt[zetadR/gamma0yw])/Sqrt[2], |

684 | InteractionOrder -> {QED, 1}, |

685 | Description -> "YdW coupling (right-handed)"}, |

686 | |

687 | |

688 | KYsL == { |

689 | ParameterType -> Internal, |

690 | BlockName -> KAPPA, |

691 | ComplexParameter -> False, |

692 | Value -> (ee/sw*Sqrt[zetasL/gamma0yw])/Sqrt[2], |

693 | InteractionOrder -> {QED, 1}, |

694 | Description -> "YsW coupling (left-handed)"}, |

695 | |

696 | |

697 | KYsR == { |

698 | ParameterType -> Internal, |

699 | BlockName -> KAPPA, |

700 | ComplexParameter -> False, |

701 | Value -> (ee/sw*Sqrt[zetasR/gamma0yw])/Sqrt[2], |

702 | InteractionOrder -> {QED, 1}, |

703 | Description -> "YsW coupling (right-handed)"}, |

704 | |

705 | |

706 | KYbL == { |

707 | ParameterType -> Internal, |

708 | BlockName -> KAPPA, |

709 | ComplexParameter -> False, |

710 | Value -> (ee/sw*Sqrt[zetabL/gamma0yw])/Sqrt[2], |

711 | InteractionOrder -> {QED, 1}, |

712 | Description -> "YbW coupling (left-handed)"}, |

713 | |

714 | |

715 | KYbR == { |

716 | ParameterType -> Internal, |

717 | BlockName -> KAPPA, |

718 | ComplexParameter -> False, |

719 | Value -> (ee/sw*Sqrt[zetabR/gamma0yw])/Sqrt[2], |

720 | InteractionOrder -> {QED, 1}, |

721 | Description -> "YbW coupling (right-handed)"}, |

722 | |

723 | |

724 | KTuLw == { |

725 | ParameterType -> Internal, |

726 | BlockName -> KAPPA, |

727 | ComplexParameter -> False, |

728 | Value -> (ee/sw*Sqrt[zetauL*xitpw/gamma0tpw])/Sqrt[2], |

729 | InteractionOrder -> {QED, 1}, |

730 | Description -> "TuW coupling (left-handed)"}, |

731 | |

732 | |

733 | KTuRw == { |

734 | ParameterType -> Internal, |

735 | BlockName -> KAPPA, |

736 | ComplexParameter -> False, |

737 | Value -> (ee/sw*Sqrt[zetauR*xitpw/gamma0tpw])/Sqrt[2], |

738 | InteractionOrder -> {QED, 1}, |

739 | Description -> "TuW coupling (right-handed)"}, |

740 | |

741 | |

742 | KTcLw == { |

743 | ParameterType -> Internal, |

744 | BlockName -> KAPPA, |

745 | ComplexParameter -> False, |

746 | Value -> (ee/sw*Sqrt[zetacL*xitpw/gamma0tpw])/Sqrt[2], |

747 | InteractionOrder -> {QED, 1}, |

748 | Description -> "TcW coupling (left-handed)"}, |

749 | |

750 | |

751 | KTcRw == { |

752 | ParameterType -> Internal, |

753 | BlockName -> KAPPA, |

754 | ComplexParameter -> False, |

755 | Value -> (ee/sw*Sqrt[zetacR*xitpw/gamma0tpw])/Sqrt[2], |

756 | InteractionOrder -> {QED, 1}, |

757 | Description -> "TcW coupling (right-handed)"}, |

758 | |

759 | |

760 | KTtLw == { |

761 | ParameterType -> Internal, |

762 | BlockName -> KAPPA, |

763 | ComplexParameter -> False, |

764 | Value -> (ee/sw*Sqrt[zetatL*xitpw/gamma0tpw])/Sqrt[2], |

765 | InteractionOrder -> {QED, 1}, |

766 | Description -> "TtW coupling (left-handed)"}, |

767 | |

768 | |

769 | KTtRw == { |

770 | ParameterType -> Internal, |

771 | BlockName -> KAPPA, |

772 | ComplexParameter -> False, |

773 | Value -> (ee/sw*Sqrt[zetatR*xitpw/gamma0tpw])/Sqrt[2], |

774 | InteractionOrder -> {QED, 1}, |

775 | Description -> "TtW coupling (right-handed)"}, |

776 | |

777 | |

778 | KTuLz == { |

779 | ParameterType -> Internal, |

780 | BlockName -> KAPPA, |

781 | ComplexParameter -> False, |

782 | Value -> (ee/sw*Sqrt[zetauL*xitpz/gamma0tpz])/2/cw, |

783 | InteractionOrder -> {QED, 1}, |

784 | Description -> "TuZ coupling (left-handed)"}, |

785 | |

786 | |

787 | KTuRz == { |

788 | ParameterType -> Internal, |

789 | BlockName -> KAPPA, |

790 | ComplexParameter -> False, |

791 | Value -> (ee/sw*Sqrt[zetauR*xitpz/gamma0tpz])/2/cw, |

792 | InteractionOrder -> {QED, 1}, |

793 | Description -> "TuZ coupling (right-handed)"}, |

794 | |

795 | |

796 | KTcLz == { |

797 | ParameterType -> Internal, |

798 | BlockName -> KAPPA, |

799 | ComplexParameter -> False, |

800 | Value -> (ee/sw*Sqrt[zetacL*xitpz/gamma0tpz])/2/cw, |

801 | InteractionOrder -> {QED, 1}, |

802 | Description -> "TcZ coupling (left-handed)"}, |

803 | |

804 | |

805 | KTcRz == { |

806 | ParameterType -> Internal, |

807 | BlockName -> KAPPA, |

808 | ComplexParameter -> False, |

809 | Value -> (ee/sw*Sqrt[zetacR*xitpz/gamma0tpz])/2/cw, |

810 | InteractionOrder -> {QED, 1}, |

811 | Description -> "TcZ coupling (right-handed)"}, |

812 | |

813 | |

814 | KTtLz == { |

815 | ParameterType -> Internal, |

816 | BlockName -> KAPPA, |

817 | ComplexParameter -> False, |

818 | Value -> (ee/sw*Sqrt[zetatL*xitpz/gamma0tpz])/2/cw, |

819 | InteractionOrder -> {QED, 1}, |

820 | Description -> "TtZ coupling (left-handed)"}, |

821 | |

822 | |

823 | KTtRz == { |

824 | ParameterType -> Internal, |

825 | BlockName -> KAPPA, |

826 | ComplexParameter -> False, |

827 | Value -> (ee/sw*Sqrt[zetatR*xitpz/gamma0tpz])/2/cw, |

828 | InteractionOrder -> {QED, 1}, |

829 | Description -> "TtZ coupling (right-handed)"}, |

830 | |

831 | |

832 | KTuLh == { |

833 | ParameterType -> Internal, |

834 | BlockName -> KAPPA, |

835 | ComplexParameter -> False, |

836 | Value -> (Sqrt[zetauL*xitph/gamma0tph]), |

837 | InteractionOrder -> {QED, 0}, |

838 | Description -> "TuH coupling (left-handed)"}, |

839 | |

840 | KTuRh == { |

841 | ParameterType -> Internal, |

842 | BlockName -> KAPPA, |

843 | ComplexParameter -> False, |

844 | Value -> (Sqrt[zetauR*xitph/gamma0tph]), |

845 | InteractionOrder -> {QED, 0}, |

846 | Description -> "TuH coupling (right-handed)"}, |

847 | |

848 | |

849 | KTcLh == { |

850 | ParameterType -> Internal, |

851 | BlockName -> KAPPA, |

852 | ComplexParameter -> False, |

853 | Value -> (Sqrt[zetacL*xitph/gamma0tph]), |

854 | InteractionOrder -> {QED, 0}, |

855 | Description -> "TcH coupling (left-handed)"}, |

856 | |

857 | |

858 | KTcRh == { |

859 | ParameterType -> Internal, |

860 | BlockName -> KAPPA, |

861 | ComplexParameter -> False, |

862 | Value -> (Sqrt[zetacR*xitph/gamma0tph]), |

863 | InteractionOrder -> {QED, 0}, |

864 | Description -> "TcH coupling (right-handed)"}, |

865 | |

866 | |

867 | KTtLh == { |

868 | ParameterType -> Internal, |

869 | BlockName -> KAPPA, |

870 | ComplexParameter -> False, |

871 | Value -> (Sqrt[zetatL*xitph/gamma0tph]), |

872 | InteractionOrder -> {QED, 0}, |

873 | Description -> "TtH coupling (left-handed)"}, |

874 | |

875 | |

876 | KTtRh == { |

877 | ParameterType -> Internal, |

878 | BlockName -> KAPPA, |

879 | ComplexParameter -> False, |

880 | Value -> (Sqrt[zetatR*xitph/gamma0tph]), |

881 | InteractionOrder -> {QED, 0}, |

882 | Description -> "TtH coupling (right-handed)"}, |

883 | |

884 | |

885 | KBdLw == { |

886 | ParameterType -> Internal, |

887 | BlockName -> KAPPA, |

888 | ComplexParameter -> False, |

889 | Value -> (ee/sw*Sqrt[zetadL*xibpw/gamma0bpw])/Sqrt[2], |

890 | InteractionOrder -> {QED, 1}, |

891 | Description -> "BdW coupling (left-handed)"}, |

892 | |

893 | |

894 | KBdRw == { |

895 | ParameterType -> Internal, |

896 | BlockName -> KAPPA, |

897 | ComplexParameter -> False, |

898 | Value -> (ee/sw*Sqrt[zetadR*xibpw/gamma0bpw])/Sqrt[2], |

899 | InteractionOrder -> {QED, 1}, |

900 | Description -> "BdW coupling (right-handed)"}, |

901 | |

902 | |

903 | KBsLw == { |

904 | ParameterType -> Internal, |

905 | BlockName -> KAPPA, |

906 | ComplexParameter -> False, |

907 | Value -> (ee/sw*Sqrt[zetasL*xibpw/gamma0bpw])/Sqrt[2], |

908 | InteractionOrder -> {QED, 1}, |

909 | Description -> "BsW coupling (left-handed)"}, |

910 | |

911 | |

912 | KBsRw == { |

913 | ParameterType -> Internal, |

914 | BlockName -> KAPPA, |

915 | ComplexParameter -> False, |

916 | Value -> (gw*Sqrt[zetasR*xibpw/gamma0bpw])/Sqrt[2], |

917 | InteractionOrder -> {QED, 1}, |

918 | Description -> "BsW coupling (right-handed)"}, |

919 | |

920 | |

921 | KBbLw == { |

922 | ParameterType -> Internal, |

923 | BlockName -> KAPPA, |

924 | ComplexParameter -> False, |

925 | Value -> (gw*Sqrt[zetabL*xibpw/gamma0bpw])/Sqrt[2], |

926 | InteractionOrder -> {QED, 1}, |

927 | Description -> "BbW coupling (left-handed)"}, |

928 | |

929 | |

930 | KBbRw == { |

931 | ParameterType -> Internal, |

932 | BlockName -> KAPPA, |

933 | ComplexParameter -> False, |

934 | Value -> (gw*Sqrt[zetabR*xibpw/gamma0bpw])/Sqrt[2], |

935 | InteractionOrder -> {QED, 1}, |

936 | Description -> "BbW coupling (right-handed)"}, |

937 | |

938 | |

939 | KBdLz == { |

940 | ParameterType -> Internal, |

941 | BlockName -> KAPPA, |

942 | ComplexParameter -> False, |

943 | Value -> (gw*Sqrt[zetadL*xibpz/gamma0bpz])/2/cw, |

944 | InteractionOrder -> {QED, 1}, |

945 | Description -> "BdZ coupling (left-handed)"}, |

946 | |

947 | |

948 | KBdRz == { |

949 | ParameterType -> Internal, |

950 | BlockName -> KAPPA, |

951 | ComplexParameter -> False, |

952 | Value -> (gw*Sqrt[zetadR*xibpz/gamma0bpz])/2/cw, |

953 | InteractionOrder -> {QED, 1}, |

954 | Description -> "BdZ coupling (right-handed)"}, |

955 | |

956 | |

957 | KBsLz == { |

958 | ParameterType -> Internal, |

959 | BlockName -> KAPPA, |

960 | ComplexParameter -> False, |

961 | Value -> (gw*Sqrt[zetasL*xibpz/gamma0bpz])/2/cw, |

962 | InteractionOrder -> {QED, 1}, |

963 | Description -> "BsZ coupling (left-handed)"}, |

964 | |

965 | |

966 | KBsRz == { |

967 | ParameterType -> Internal, |

968 | BlockName -> KAPPA, |

969 | ComplexParameter -> False, |

970 | Value -> (gw*Sqrt[zetasR*xibpz/gamma0bpz])/2/cw, |

971 | InteractionOrder -> {QED, 1}, |

972 | Description -> "BsZ coupling (right-handed)"}, |

973 | |

974 | |

975 | KBbLz == { |

976 | ParameterType -> Internal, |

977 | BlockName -> KAPPA, |

978 | ComplexParameter -> False, |

979 | Value -> (gw*Sqrt[zetabL*xibpz/gamma0bpz])/2/cw, |

980 | InteractionOrder -> {QED, 1}, |

981 | Description -> "BbZ coupling (left-handed)"}, |

982 | |

983 | |

984 | KBbRz == { |

985 | ParameterType -> Internal, |

986 | BlockName -> KAPPA, |

987 | ComplexParameter -> False, |

988 | Value -> (gw*Sqrt[zetabR*xibpz/gamma0bpz])/2/cw, |

989 | InteractionOrder -> {QED, 1}, |

990 | Description -> "BbZ coupling (right-handed)"}, |

991 | |

992 | |

993 | KBdLh == { |

994 | ParameterType -> Internal, |

995 | BlockName -> KAPPA, |

996 | ComplexParameter -> False, |

997 | Value -> (Sqrt[zetadL*xibph/gamma0bph]), |

998 | InteractionOrder -> {QED, 0}, |

999 | Description -> "BdH coupling (left-handed)"}, |

1000 | |

1001 | |

1002 | KBdRh == { |

1003 | ParameterType -> Internal, |

1004 | BlockName -> KAPPA, |

1005 | ComplexParameter -> False, |

1006 | Value -> (Sqrt[zetadR*xibph/gamma0bph]), |

1007 | InteractionOrder -> {QED, 0}, |

1008 | Description -> "BdH coupling (right-handed)"}, |

1009 | |

1010 | |

1011 | KBsLh == { |

1012 | ParameterType -> Internal, |

1013 | BlockName -> KAPPA, |

1014 | ComplexParameter -> False, |

1015 | Value -> (Sqrt[zetasL*xibph/gamma0bph]), |

1016 | InteractionOrder -> {QED, 0}, |

1017 | Description -> "BsH coupling (left-handed)"}, |

1018 | |

1019 | |

1020 | KBsRh == { |

1021 | ParameterType -> Internal, |

1022 | BlockName -> KAPPA, |

1023 | ComplexParameter -> False, |

1024 | Value -> (Sqrt[zetasR*xibph/gamma0bph]), |

1025 | InteractionOrder -> {QED, 0}, |

1026 | Description -> "BsH coupling (right-handed)"}, |

1027 | |

1028 | |

1029 | KBbLh == { |

1030 | ParameterType -> Internal, |

1031 | BlockName -> KAPPA, |

1032 | ComplexParameter -> False, |

1033 | Value -> (Sqrt[zetabL*xibph/gamma0bph]), |

1034 | InteractionOrder -> {QED, 0}, |

1035 | Description -> "BbH coupling (left-handed)"}, |

1036 | |

1037 | |

1038 | KBbRh == { |

1039 | ParameterType -> Internal, |

1040 | BlockName -> KAPPA, |

1041 | ComplexParameter -> False, |

1042 | Value -> (Sqrt[zetabR*xibph/gamma0bph]), |

1043 | InteractionOrder -> {QED, 0}, |

1044 | Description -> "BbH coupling (right-handed)"}} |

1045 | |

1046 | (************** Gauge Groups ******************) |

1047 | |

1048 | M$GaugeGroups = { |

1049 | |

1050 | U1Y == { |

1051 | Abelian -> True, |

1052 | GaugeBoson -> B, |

1053 | Charge -> Y, |

1054 | CouplingConstant -> g1}, |

1055 | |

1056 | SU2L == { |

1057 | Abelian -> False, |

1058 | GaugeBoson -> Wi, |

1059 | StructureConstant -> Eps, |

1060 | CouplingConstant -> gw}, |

1061 | |

1062 | SU3C == { |

1063 | Abelian -> False, |

1064 | GaugeBoson -> G, |

1065 | StructureConstant -> f, |

1066 | SymmetricTensor -> dSUN, |

1067 | Representations -> {T, Colour}, |

1068 | CouplingConstant -> gs} |

1069 | } |

1070 | |

1071 | (********* Particle Classes **********) |

1072 | |

1073 | M$ClassesDescription = { |

1074 | |

1075 | (********** Fermions ************) |

1076 | (* Leptons (neutrino): I_3 = +1/2, Q = 0 *) |

1077 | F[1] == { |

1078 | ClassName -> vl, |

1079 | ClassMembers -> {ve,vm,vt}, |

1080 | FlavorIndex -> Generation, |

1081 | SelfConjugate -> False, |

1082 | Indices -> {Index[Generation]}, |

1083 | Mass -> 0, |

1084 | Width -> 0, |

1085 | QuantumNumbers -> {LeptonNumber -> 1}, |

1086 | PropagatorLabel -> {"v", "ve", "vm", "vt"} , |

1087 | PropagatorType -> S, |

1088 | PropagatorArrow -> Forward, |

1089 | PDG -> {12,14,16}, |

1090 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} }, |

1091 | |

1092 | (* Leptons (electron): I_3 = -1/2, Q = -1 *) |

1093 | F[2] == { |

1094 | ClassName -> l, |

1095 | ClassMembers -> {e, m, tt}, |

1096 | FlavorIndex -> Generation, |

1097 | SelfConjugate -> False, |

1098 | Indices -> {Index[Generation]}, |

1099 | Mass -> {Ml, {Me, 5.11 * 10^(-4)}, {MM, 0.10566}, {MTA, 1.777}}, |

1100 | Width -> 0, |

1101 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}, |

1102 | PropagatorLabel -> {"l", "e", "m", "tt"}, |

1103 | PropagatorType -> Straight, |

1104 | ParticleName -> {"e-", "m-", "tt-"}, |

1105 | AntiParticleName -> {"e+", "m+", "tt+"}, |

1106 | PropagatorArrow -> Forward, |

1107 | PDG -> {11, 13, 15}, |

1108 | FullName -> {"Electron", "Muon", "Tau"} }, |

1109 | |

1110 | (* Quarks (u): I_3 = +1/2, Q = +2/3 *) |

1111 | F[3] == { |

1112 | ClassMembers -> {u, c, t}, |

1113 | ClassName -> uq, |

1114 | FlavorIndex -> Generation, |

1115 | SelfConjugate -> False, |

1116 | Indices -> {Index[Generation], Index[Colour]}, |

1117 | Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.40}, {MT, 174.3}}, |

1118 | Width -> {0, 0, {WT, 1.51013490}}, |

1119 | QuantumNumbers -> {Q -> 2/3}, |

1120 | PropagatorLabel -> {"uq", "u", "c", "t"}, |

1121 | PropagatorType -> Straight, |

1122 | PropagatorArrow -> Forward, |

1123 | PDG -> {2, 4, 6}, |

1124 | FullName -> {"u-quark", "c-quark", "t-quark"}}, |

1125 | |

1126 | (* Quarks (d): I_3 = -1/2, Q = -1/3 *) |

1127 | F[4] == { |

1128 | ClassMembers -> {d, s, b}, |

1129 | ClassName -> dq, |

1130 | FlavorIndex -> Generation, |

1131 | SelfConjugate -> False, |

1132 | Indices -> {Index[Generation], Index[Colour]}, |

1133 | Mass -> {Md, {MD, 5.04*10^(-3)}, {MS, 0.101}, {MB, 4.2}}, |

1134 | Width -> 0, |

1135 | QuantumNumbers -> {Q -> -1/3}, |

1136 | PropagatorLabel -> {"dq", "d", "s", "b"}, |

1137 | PropagatorType -> Straight, |

1138 | PropagatorArrow -> Forward, |

1139 | PDG -> {1,3,5}, |

1140 | FullName -> {"d-quark", "s-quark", "b-quark"} }, |

1141 | |

1142 | (* VLQ Quarks X *) |

1143 | F[5] == { |

1144 | ClassMembers -> {x}, |

1145 | ClassName -> xq, |

1146 | SelfConjugate -> False, |

1147 | Indices -> {Index[Colour]}, |

1148 | Mass -> {{MX,600}}, |

1149 | Width -> {{WX, 1}}, |

1150 | QuantumNumbers -> {Q -> 5/3}, |

1151 | PropagatorLabel -> {"x"}, |

1152 | PropagatorType -> Straight, |

1153 | PropagatorArrow -> Forward, |

1154 | PDG -> {6000008}, |

1155 | FullName -> {"X-quark"}}, |

1156 | |

1157 | (* VLQ Quarks T *) |

1158 | F[6] == { |

1159 | ClassName -> tpq, |

1160 | ClassMembers -> {tp}, |

1161 | SelfConjugate -> False, |

1162 | Indices -> {Index[Colour]}, |

1163 | Mass -> {{MTP,600}}, |

1164 | Width -> {{WTP, 1}}, |

1165 | QuantumNumbers -> {Q -> 2/3}, |

1166 | PropagatorLabel -> {"tp"}, |

1167 | PropagatorType -> Straight, |

1168 | PropagatorArrow -> Forward, |

1169 | PDG -> {6000006}, |

1170 | FullName -> {"T-quark"}}, |

1171 | |

1172 | (* VLQ Quarks B *) |

1173 | F[7] == { |

1174 | ClassName -> bpq, |

1175 | ClassMembers -> {bp}, |

1176 | SelfConjugate -> False, |

1177 | Indices -> {Index[Colour]}, |

1178 | Mass -> {{MBP,600}}, |

1179 | Width -> {{WBP, 1}}, |

1180 | QuantumNumbers -> {Q -> -1/3}, |

1181 | PropagatorLabel -> {"bp"}, |

1182 | PropagatorType -> Straight, |

1183 | PropagatorArrow -> Forward, |

1184 | PDG -> {6000005}, |

1185 | FullName -> {"B-quark"}}, |

1186 | |

1187 | (* VLQ Quarks Y *) |

1188 | F[8] == { |

1189 | ClassMembers -> {y}, |

1190 | ClassName -> yq, |

1191 | SelfConjugate -> False, |

1192 | Indices -> {Index[Colour]}, |

1193 | Mass -> {{MY,600}}, |

1194 | Width -> {{WY, 1}}, |

1195 | QuantumNumbers -> {Q -> -4/3}, |

1196 | PropagatorLabel -> {"y"}, |

1197 | PropagatorType -> Straight, |

1198 | PropagatorArrow -> Forward, |

1199 | PDG -> {6000007}, |

1200 | FullName -> {"Y-quark"}}, |

1201 | |

1202 | (********** Ghosts **********) |

1203 | U[1] == { |

1204 | ClassName -> ghA, |

1205 | SelfConjugate -> False, |

1206 | Indices -> {}, |

1207 | Ghost -> A, |

1208 | Mass -> 0, |

1209 | QuantumNumbers -> {GhostNumber -> 1}, |

1210 | PropagatorLabel -> uA, |

1211 | PropagatorType -> GhostDash, |

1212 | PropagatorArrow -> Forward}, |

1213 | |

1214 | U[2] == { |

1215 | ClassName -> ghZ, |

1216 | SelfConjugate -> False, |

1217 | Indices -> {}, |

1218 | Mass -> {MZ, 91.1876}, |

1219 | Ghost -> Z, |

1220 | QuantumNumbers -> {GhostNumber -> 1}, |

1221 | PropagatorLabel -> uZ, |

1222 | PropagatorType -> GhostDash, |

1223 | PropagatorArrow -> Forward}, |

1224 | |

1225 | U[31] == { |

1226 | ClassName -> ghWp, |

1227 | SelfConjugate -> False, |

1228 | Indices -> {}, |

1229 | Mass -> {MW, Internal}, |

1230 | Ghost -> W, |

1231 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1}, |

1232 | PropagatorLabel -> uWp, |

1233 | PropagatorType -> GhostDash, |

1234 | PropagatorArrow -> Forward}, |

1235 | |

1236 | U[32] == { |

1237 | ClassName -> ghWm, |

1238 | SelfConjugate -> False, |

1239 | Indices -> {}, |

1240 | Mass -> {MW, Internal}, |

1241 | Ghost -> Wbar, |

1242 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1}, |

1243 | PropagatorLabel -> uWm, |

1244 | PropagatorType -> GhostDash, |

1245 | PropagatorArrow -> Forward}, |

1246 | |

1247 | U[4] == { |

1248 | ClassName -> ghG, |

1249 | SelfConjugate -> False, |

1250 | Indices -> {Index[Gluon]}, |

1251 | Ghost -> G, |

1252 | Mass -> 0, |

1253 | QuantumNumbers -> {GhostNumber -> 1}, |

1254 | PropagatorLabel -> uG, |

1255 | PropagatorType -> GhostDash, |

1256 | PropagatorArrow -> Forward}, |

1257 | |

1258 | U[5] == { |

1259 | ClassName -> ghWi, |

1260 | Unphysical -> True, |

1261 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2], |

1262 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I, |

1263 | ghWi[3] -> cw ghZ + sw ghA}, |

1264 | SelfConjugate -> False, |

1265 | Ghost -> Wi, |

1266 | Indices -> {Index[SU2W]}, |

1267 | FlavorIndex -> SU2W}, |

1268 | |

1269 | U[6] == { |

1270 | ClassName -> ghB, |

1271 | SelfConjugate -> False, |

1272 | Definitions -> {ghB -> -sw ghZ + cw ghA}, |

1273 | Indices -> {}, |

1274 | Ghost -> B, |

1275 | Unphysical -> True}, |

1276 | |

1277 | (************ Gauge Bosons ***************) |

1278 | (* Gauge bosons: Q = 0 *) |

1279 | V[1] == { |

1280 | ClassName -> A, |

1281 | SelfConjugate -> True, |

1282 | Indices -> {}, |

1283 | Mass -> 0, |

1284 | Width -> 0, |

1285 | PropagatorLabel -> "a", |

1286 | PropagatorType -> W, |

1287 | PropagatorArrow -> None, |

1288 | PDG -> 22, |

1289 | FullName -> "Photon" }, |

1290 | |

1291 | V[2] == { |

1292 | ClassName -> Z, |

1293 | SelfConjugate -> True, |

1294 | Indices -> {}, |

1295 | Mass -> {MZ, 91.1876}, |

1296 | Width -> {WZ, 2.44639985}, |

1297 | PropagatorLabel -> "Z", |

1298 | PropagatorType -> Sine, |

1299 | PropagatorArrow -> None, |

1300 | PDG -> 23, |

1301 | FullName -> "Z" }, |

1302 | |

1303 | (* Gauge bosons: Q = -1 *) |

1304 | V[3] == { |

1305 | ClassName -> W, |

1306 | SelfConjugate -> False, |

1307 | Indices -> {}, |

1308 | Mass -> {MW, Internal}, |

1309 | Width -> {WW, 2.03535570}, |

1310 | QuantumNumbers -> {Q -> 1}, |

1311 | PropagatorLabel -> "W", |

1312 | PropagatorType -> Sine, |

1313 | PropagatorArrow -> Forward, |

1314 | ParticleName ->"W+", |

1315 | AntiParticleName ->"W-", |

1316 | PDG -> 24, |

1317 | FullName -> "W" }, |

1318 | |

1319 | V[4] == { |

1320 | ClassName -> G, |

1321 | SelfConjugate -> True, |

1322 | Indices -> {Index[Gluon]}, |

1323 | Mass -> 0, |

1324 | Width -> 0, |

1325 | PropagatorLabel -> G, |

1326 | PropagatorType -> C, |

1327 | PropagatorArrow -> None, |

1328 | PDG -> 21, |

1329 | FullName -> "G" }, |

1330 | |

1331 | V[5] == { |

1332 | ClassName -> Wi, |

1333 | Unphysical -> True, |

1334 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2], |

1335 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I, |

1336 | Wi[mu_, 3] -> cw Z[mu] + sw A[mu]}, |

1337 | SelfConjugate -> True, |

1338 | Indices -> {Index[SU2W]}, |

1339 | FlavorIndex -> SU2W, |

1340 | Mass -> 0, |

1341 | PDG -> {1,2,3}}, |

1342 | |

1343 | V[6] == { |

1344 | ClassName -> B, |

1345 | SelfConjugate -> True, |

1346 | Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]}, |

1347 | Indices -> {}, |

1348 | Mass -> 0, |

1349 | Unphysical -> True}, |

1350 | |

1351 | |

1352 | (************ Scalar Fields **********) |

1353 | (* physical Higgs: Q = 0 *) |

1354 | S[1] == { |

1355 | ClassName -> H, |

1356 | SelfConjugate -> True, |

1357 | Mass -> {MH, 120}, |

1358 | Width -> {WH, 0.00679485838}, |

1359 | PropagatorLabel -> "H", |

1360 | PropagatorType -> D, |

1361 | PropagatorArrow -> None, |

1362 | PDG -> 25, |

1363 | TeXParticleName -> "\\phi", |

1364 | TeXClassName -> "\\phi", |

1365 | FullName -> "H" }, |

1366 | |

1367 | S[2] == { |

1368 | ClassName -> phi, |

1369 | SelfConjugate -> True, |

1370 | Mass -> {MZ, 91.5445065}, |

1371 | Width -> Wphi, |

1372 | PropagatorLabel -> "Phi", |

1373 | PropagatorType -> D, |

1374 | PropagatorArrow -> None, |

1375 | ParticleName ->"phi0", |

1376 | PDG -> 250, |

1377 | FullName -> "Phi", |

1378 | Goldstone -> Z }, |

1379 | |

1380 | S[3] == { |

1381 | ClassName -> phi2, |

1382 | SelfConjugate -> False, |

1383 | Mass -> {MW, Internal}, |

1384 | Width -> Wphi2, |

1385 | PropagatorLabel -> "Phi2", |

1386 | PropagatorType -> D, |

1387 | PropagatorArrow -> None, |

1388 | ParticleName ->"phi+", |

1389 | AntiParticleName ->"phi-", |

1390 | PDG -> 251, |

1391 | FullName -> "Phi2", |

1392 | TeXClassName -> "\\phi^+", |

1393 | TeXParticleName -> "\\phi^+", |

1394 | TeXAntiParticleName -> "\\phi^-", |

1395 | Goldstone -> W, |

1396 | QuantumNumbers -> {Q -> 1}} |

1397 | } |

1398 | |

1399 | |

1400 | |

1401 | |

1402 | (*****************************************************************************************) |

1403 | |

1404 | (* SM Lagrangian *) |

1405 | |

1406 | (******************** Gauge F^2 Lagrangian terms*************************) |

1407 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*) |

1408 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])* |

1409 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) - |

1410 | |

1411 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 - |

1412 | |

1413 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])* |

1414 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]); |

1415 | |

1416 | |

1417 | (********************* Fermion Lagrangian terms*************************) |

1418 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*) |

1419 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright}, |

1420 | |

1421 | Lkin = I uqbar.Ga[mu].del[uq, mu] + |

1422 | I dqbar.Ga[mu].del[dq, mu] + |

1423 | I lbar.Ga[mu].del[l, mu] + |

1424 | I vlbar.Ga[mu].del[vl, mu]; |

1425 | |

1426 | LQCD = gs (uqbar.Ga[mu].T[a].uq + |

1427 | dqbar.Ga[mu].T[a].dq)G[mu, a]; |

1428 | |

1429 | LBright = |

1430 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*) |

1431 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*) |

1432 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*) |

1433 | |

1434 | LBleft = |

1435 | -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl - (*Y_LL=-1*) |

1436 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*) |

1437 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*) |

1438 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*) |

1439 | |

1440 | LWleft = ee/sw/2( |

1441 | vlbar.Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*) |

1442 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*) |

1443 | |

1444 | Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] + |

1445 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+ |

1446 | |

1447 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*) |

1448 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*) |

1449 | |

1450 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] + |

1451 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu] |

1452 | ); |

1453 | |

1454 | Lkin + LQCD + LBright + LBleft + LWleft]; |

1455 | |

1456 | |

1457 | (** Note : future modifications to the SM W and Z currents should be considered here above **) |

1458 | |

1459 | (******************** Higgs Lagrangian terms****************************) |

1460 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}]; |

1461 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}]; |

1462 | |

1463 | |

1464 | |

1465 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi}, |

1466 | |

1467 | PMVec = Table[PauliSigma[i], {i, 3}]; |

1468 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]}; |

1469 | |

1470 | (*Y_phi=1*) |

1471 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f; |

1472 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec); |

1473 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2; |

1474 | |

1475 | (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]]; |

1476 | |

1477 | |

1478 | (*************** Yukawa Lagrangian***********************) |

1479 | LYuk := If[FeynmanGauge, |

1480 | |

1481 | Module[{s,r,n,m,i}, - |

1482 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) - |

1483 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2] - |

1484 | |

1485 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2] + (*This sign from eps matrix*) |

1486 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar) - |

1487 | |

1488 | yl[n] vlbar[s,n].ProjP[s,r].l[r,n] (-I phi2) - |

1489 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H +I phi)/Sqrt[2] |

1490 | ], |

1491 | |

1492 | Module[{s,r,n,m,i}, - |

1493 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] - |

1494 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] - |

1495 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2] |

1496 | ] |

1497 | ]; |

1498 | |

1499 | LYukawa := LYuk + HC[LYuk]; |

1500 | |

1501 | (** Note : future modifications to the SM H currents should be considered here above **) |

1502 | |

1503 | (**************Ghost terms**************************) |

1504 | (* Now we need the ghost terms which are of the form: *) |

1505 | (* - g * antighost * d_BRST G *) |

1506 | (* where d_BRST G is BRST transform of the gauge fixing function. *) |

1507 | |

1508 | LGhost := If[FeynmanGauge, |

1509 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB}, |

1510 | |

1511 | (***********First the pure gauge piece.**********************) |

1512 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]]; |

1513 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu]; |

1514 | |

1515 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ]; |

1516 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu]; |

1517 | |

1518 | dBRSTB[mu_] := cw/ee del[ghB, mu]; |

1519 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu]; |

1520 | |

1521 | (***********Next the piece from the scalar field.************) |

1522 | LGhostphi := - ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) + |

1523 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) - |

1524 | ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm ) - |

1525 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) - |

1526 | ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ; |

1527 | |

1528 | |

1529 | (***********Now add the pieces together.********************) |

1530 | LGhostG + LGhostWi + LGhostB + LGhostphi] |

1531 | |

1532 | , |

1533 | |

1534 | (*If unitary gauge, only include the gluonic ghost.*) |

1535 | Block[{dBRSTG,LGhostG}, |

1536 | |

1537 | (***********First the pure gauge piece.**********************) |

1538 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]]; |

1539 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu]; |

1540 | |

1541 | (***********Now add the pieces together.********************) |

1542 | LGhostG] |

1543 | |

1544 | ]; |

1545 | |

1546 | (*********SM Lagrangian*******) |

1547 | LSM := LGauge + LHiggs + LFermions + LYukawa + LGhost; |

1548 | |

1549 | |

1550 | (*********VLQ Lagrangians*******) |

1551 | (** We here assume that the physical and mass eigenstates match for the vector-like quarks **) |

1552 | |

1553 | (*********LT, EW interactions*******) |

1554 | |

1555 | LTW := |

1556 | +KT*KTuLw*(tpbar.W[mu].Ga[mu].ProjM.d)+KT*KTuRw*(tpbar.W[mu].Ga[mu].ProjP.d)+KT*KTuLw*(dbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTuRw*(dbar.Wbar[mu].Ga[mu].ProjP.tp)+KT*KTcLw*(tpbar.W[mu].Ga[mu].ProjM.s)+KT*KTcRw*(tpbar.W[mu].Ga[mu].ProjP.s)+KT*KTcLw*(sbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTcRw*(sbar.Wbar[mu].Ga[mu].ProjP.tp)+KT*KTtLw*(tpbar.W[mu].Ga[mu].ProjM.b)+KT*KTtRw*(tpbar.W[mu].Ga[mu].ProjP.b)+KT*KTtLw*(bbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTtRw*(bbar.Wbar[mu].Ga[mu].ProjP.tp); |

1557 | |

1558 | LTZ :=+KT*KTuLz*(tpbar.Z[mu].Ga[mu].ProjM.u)+KT*KTuRz*(tpbar.Z[mu].Ga[mu].ProjP.u)+KT*KTuLz*(ubar.Z[mu].Ga[mu].ProjM.tp)+KT*KTuRz*(ubar.Z[mu].Ga[mu].ProjP.tp)+KT*KTcLz*(tpbar.Z[mu].Ga[mu].ProjM.c)+KT*KTcRz*(tpbar.Z[mu].Ga[mu].ProjP.c)+KT*KTcLz*(cbar.Z[mu].Ga[mu].ProjM.tp)+KT*KTcRz*(cbar.Z[mu].Ga[mu].ProjP.tp)+KT*KTtLz*(tpbar.Z[mu].Ga[mu].ProjM.t)+KT*KTtRz*(tpbar.Z[mu].Ga[mu].ProjP.t)+KT*KTtLz*(tbar.Z[mu].Ga[mu].ProjM.tp)+KT*KTtRz*(tbar.Z[mu].Ga[mu].ProjP.tp); |

1559 | |

1560 | LTH:=-KT*MTP*KTuLh*(tpbar.H.ProjP.u)/v-KT*MTP*KTuLh*(ubar.H.ProjM.tp)/v-KT*MTP*KTuRh*(tpbar.H.ProjM.u)/v-KT*MTP*KTuRh*(ubar.H.ProjP.tp)/v-KT*MTP*KTcLh*(tpbar.H.ProjP.c)/v-KT*MTP*KTcLh*(cbar.H.ProjM.tp)/v-KT*MTP*KTcRh*(tpbar.H.ProjM.c)/v-KT*MTP*KTcRh*(cbar.H.ProjP.tp)/v-KT*MTP*KTtLh*(tpbar.H.ProjP.t)/v-KT*MTP*KTtLh*(tbar.H.ProjM.tp)/v-KT*MTP*KTtRh*(tpbar.H.ProjM.t)/v-KT*MTP*KTtRh*(tbar.H.ProjP.tp)/v; |

1561 | |

1562 | |

1563 | (*********LB, EW interactions*******) |

1564 | |

1565 | LBW :=+KB*KBdLw*(bpbar.Wbar[mu].Ga[mu].ProjM.u)+KB*KBdRw*(bpbar.Wbar[mu].Ga[mu].ProjP.u)+KB*KBdLw*(ubar.W[mu].Ga[mu].ProjM.bp)+KB*KBdRw*(ubar.W[mu].Ga[mu].ProjP.bp)+KB*KBsLw*(bpbar.Wbar[mu].Ga[mu].ProjM.c)+KB*KBsRw*(bpbar.Wbar[mu].Ga[mu].ProjP.c)+KB*KBsLw*(cbar.W[mu].Ga[mu].ProjM.bp)+KB*KBsRw*(cbar.W[mu].Ga[mu].ProjP.bp)+KB*KBbLw*(bpbar.Wbar[mu].Ga[mu].ProjM.t)+KB*KBbRw*(bpbar.Wbar[mu].Ga[mu].ProjP.t)+KB*KBbLw*(tbar.W[mu].Ga[mu].ProjM.bp)+KB*KBbRw*(tbar.W[mu].Ga[mu].ProjP.bp); |

1566 | |

1567 | LBZ := +KB*KBdLz*(bpbar.Z[mu].Ga[mu].ProjM.d)+KB*KBdRz*(bpbar.Z[mu].Ga[mu].ProjP.d)+KB*KBdLz*(dbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBdRz*(dbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBsLz*(bpbar.Z[mu].Ga[mu].ProjM.s)+KB*KBsRz*(bpbar.Z[mu].Ga[mu].ProjP.s)+KB*KBsLz*(sbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBsRz*(sbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBbLz*(bpbar.Z[mu].Ga[mu].ProjM.b)+KB*KBbRz*(bpbar.Z[mu].Ga[mu].ProjP.b)+KB*KBbLz*(bbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBbRz*(bbar.Z[mu].Ga[mu].ProjP.bp); |

1568 | |

1569 | LBH:=-KB*MBP*KBdLh*(bpbar.H.ProjP.d)/v-KB*MBP*KBdLh*(dbar.H.ProjM.bp)/v-KB*MBP*KBdRh*(bpbar.H.ProjM.d)/v-KB*MBP*KBdRh*(dbar.H.ProjP.bp)/v-KB*MBP*KBsLh*(bpbar.H.ProjP.s)/v-KB*MBP*KBsLh*(sbar.H.ProjM.bp)/v-KB*MBP*KBsRh*(bpbar.H.ProjM.s)/v-KB*MBP*KBsRh*(sbar.H.ProjP.bp)/v-KB*MBP*KBbLh*(bpbar.H.ProjP.b)/v-KB*MBP*KBbLh*(bbar.H.ProjM.bp)/v-KB*MBP*KBbRh*(bpbar.H.ProjM.b)/v-KB*MBP*KBbRh*(bbar.H.ProjP.bp)/v; |

1570 | |

1571 | (*********LX, EW interactions*******) |

1572 | |

1573 | |

1574 | LXW := |

1575 | KX*KXuL*(xbar.W[mu].Ga[mu].ProjM.u)+KX*KXuR*(xbar.W[mu].Ga[mu].ProjP.u)+KX*KXuL*(ubar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXuR*(ubar.Wbar[mu].Ga[mu].ProjP.x)+KX*KXcL*(xbar.W[mu].Ga[mu].ProjM.c)+KX*KXcR*(xbar.W[mu].Ga[mu].ProjP.c)+KX*KXcL*(cbar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXcR*(cbar.Wbar[mu].Ga[mu].ProjP.x)+KX*KXtL*(xbar.W[mu].Ga[mu].ProjM.t)+KX*KXtR*(xbar.W[mu].Ga[mu].ProjP.t)+KX*KXtL*(tbar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXtR*(tbar.Wbar[mu].Ga[mu].ProjP.x); |

1576 | |

1577 | |

1578 | |

1579 | (*********LY, EW interactions*******) |

1580 | |

1581 | LYW := |

1582 | +KY*KYdL*(ybar.Wbar[mu].Ga[mu].ProjM.d)+KY*KYdR*(ybar.Wbar[mu].Ga[mu].ProjP.d)+KY*KYdL*(dbar.W[mu].Ga[mu].ProjM.y)+KY*KYdR*(dbar.W[mu].Ga[mu].ProjP.y)+KY*KYsL*(ybar.Wbar[mu].Ga[mu].ProjM.s)+KY*KYsR*(ybar.Wbar[mu].Ga[mu].ProjP.s)+KY*KYsL*(sbar.W[mu].Ga[mu].ProjM.y)+KY*KYsR*(sbar.W[mu].Ga[mu].ProjP.y)+KY*KYbL*(ybar.Wbar[mu].Ga[mu].ProjM.b)+KY*KYbR*(ybar.Wbar[mu].Ga[mu].ProjP.b)+KY*KYbL*(bbar.W[mu].Ga[mu].ProjM.y)+KY*KYbR*(bbar.W[mu].Ga[mu].ProjP.y); |

1583 | |

1584 | |

1585 | (*********Kinetic, mass & QCD lagrangians for VLQ*******) |

1586 | |

1587 | LTK := I tpbar.Ga[mu].del[tp, mu]; |

1588 | LBK := I bpbar.Ga[mu].del[bp, mu]; |

1589 | LXK := I xbar.Ga[mu].del[x, mu]; |

1590 | LYK := I ybar.Ga[mu].del[y, mu]; |

1591 | |

1592 | LTM := -MTP.tpbar.tp; |

1593 | LBM := -MBP.bpbar.bp; |

1594 | LXM := -MX.xbar.x; |

1595 | LYM := -MY.ybar.y; |

1596 | |

1597 | |

1598 | LTG := gs (tpbar.Ga[mu].T[a].tp)G[mu, a]; |

1599 | LBG := gs (bpbar.Ga[mu].T[a].bp)G[mu, a]; |

1600 | LXG := gs (xbar.Ga[mu].T[a].x)G[mu, a]; |

1601 | LYG := gs (ybar.Ga[mu].T[a].y)G[mu, a]; |

1602 | |

1603 | LTA := 2*ee/3 (tpbar.Ga[mu].tp)A[mu]; |

1604 | LBA := -1*ee/3 (bpbar.Ga[mu].bp)A[mu]; |

1605 | LXA := 5*ee/3 (xbar.Ga[mu].x)A[mu]; |

1606 | LYA := -4*ee/3 (ybar.Ga[mu].y)A[mu]; |

1607 | |

1608 | LT := LTW + LTZ + LTH + LTK + LTM + LTG +LTA ; |

1609 | LB := LBW + LBZ + LBH + LBK + LBM + LBG +LBA ; |

1610 | LX := LXW + LXK + LXM + LXG + LXA ; |

1611 | LY := LYW + LYK + LYM + LYG + LYA ; |

1612 | |

1613 | LVLQ := LT + LB + LX + LY; |

1614 | |

1615 | |

1616 | (*********Gluon-VLQ chromomagnetic Lagrangian*******) |

1617 | |

1618 | |

1619 | Sigma[mu_,nu_]:=I/2*(Ga[mu].Ga[nu]-Ga[nu].Ga[mu]); |

1620 | |

1621 | |

1622 | LChromoT := KT*KG*gs*v/2/Lambda/Lambda*Module[{a, s, r, i, j, t, u, mu, nu},uqbar[r, 1, i].tp[s, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fuR*ProjP[u, r] + fuL*ProjM[u, r]) FS[G, mu, nu, a] + tpbar[r, i].uq[s, 1, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fuR*ProjP[u, r] + fuL*ProjM[u, r]) FS[G, mu, nu, a] + uqbar[r, 2, i].tp[s, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fcR*ProjP[u, r] + fcL*ProjM[u, r]) FS[G, mu, nu, a] + tpbar[r, i].uq[s, 2, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fcR*ProjP[u, r] + fcL*ProjM[u, r]) FS[G, mu, nu, a] + uqbar[r, 3, i].tp[s, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (ftR*ProjP[u, r] + ftL*ProjM[u, r]) FS[G, mu, nu, a] + tpbar[r, i].uq[s, 3, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (ftR*ProjP[u, r] + ftL*ProjM[u, r]) FS[G, mu, nu, a]]; |

1623 | |

1624 | LChromoB := KB*KG*gs*v/2/Lambda/Lambda*Module[{a, s, r, i, j, t, u, mu, nu},dqbar[r, 1, i].bp[s, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fdR*ProjP[u, r] + fdL*ProjM[u, r]) FS[G, mu, nu, a] + bpbar[r, i].dq[s, 1, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fdR*ProjP[u, r] + fdL*ProjM[u, r]) FS[G, mu, nu, a] + dqbar[r, 2, i].bp[s, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fsR*ProjP[u, r] + fsL*ProjM[u, r]) FS[G, mu, nu, a] + bpbar[r, i].dq[s, 2, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fsR*ProjP[u, r] + fsL*ProjM[u, r]) FS[G, mu, nu, a] + dqbar[r, 3, i].bp[s, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fbR*ProjP[u, r] + fbL*ProjM[u, r]) FS[G, mu, nu, a] + bpbar[r, i].dq[s, 3, j] T[a, i,j] (I/2*(Ga[mu, s, t].Ga[nu, t, u] - Ga[nu, s, t].Ga[mu, t, u])) (fbR*ProjP[u, r] + fbL*ProjM[u, r]) FS[G, mu, nu, a]]; |

1625 | |

1626 | |

1627 | |

1628 | (*********Total Lagrangian*******) |

1629 | |

1630 | LAn := LChromoT + LChromoB; |

1631 | |

1632 | L := LSM + LVLQ + LAn; |

1633 | |

1634 |