# VLQ_bsingletvl: BsingletVL.fr

File BsingletVL.fr, 30.5 KB (added by buchkremer, 6 years ago) |
---|

Line | |
---|---|

1 | (***************************************************************************************************************) |

2 | (****** FeynRules mod-file for Model Independent searches of top partners ******) |

3 | (****** B(-1/3) singlet ******) |

4 | (****** ******) |

5 | (****** Authors: M. Buchkremer, G. Cacciapaglia, A. Deandrea,L. Panizzi ******) |

6 | (****** ******) |

7 | (***************************************************************************************************************) |

8 | |

9 | M$ModelName = "BsingletVL"; |

10 | |

11 | |

12 | M$Information = {Authors -> {"M. Buchkremer","G. Cacciapaglia","A. Deandrea","L. Panizzi"}, |

13 | Version -> "1.2.5", |

14 | Date -> "15. 04. 2014", |

15 | Institutions -> {"Universite catholique de Louvain (CP3)","Universite de Lyon (CNRS/IN2P3)","University of Southampton (School of Physics and Astronomy)"}, |

16 | Emails -> {"mathieu.buchkremer@uclouvain.be", "g.cacciapaglia@ipnl.in2p3.fr","deandrea@ipnl.in2p3.fr", "l.panizzi@soton.ac.uk"}, |

17 | References -> {"arXiv:1305.4172"}}; |

18 | |

19 | |

20 | (******* Index definitions ********) |

21 | |

22 | IndexRange[ Index[Generation] ] = Range[3] |

23 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]] |

24 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]] |

25 | IndexRange[ Index[SU2W] ] = Unfold[Range[3]] |

26 | IndexStyle[Colour, i] |

27 | IndexStyle[Generation, f] |

28 | IndexStyle[Gluon ,a] |

29 | IndexStyle[SU2W ,k] |

30 | |

31 | (******* Gauge parameters (for FeynArts) ********) |

32 | |

33 | GaugeXi[ V[1] ] = GaugeXi[A]; |

34 | GaugeXi[ V[2] ] = GaugeXi[Z]; |

35 | GaugeXi[ V[3] ] = GaugeXi[W]; |

36 | GaugeXi[ V[4] ] = GaugeXi[G]; |

37 | GaugeXi[ S[1] ] = 1; |

38 | GaugeXi[ S[2] ] = GaugeXi[Z]; |

39 | GaugeXi[ S[3] ] = GaugeXi[W]; |

40 | GaugeXi[ U[1] ] = GaugeXi[A]; |

41 | GaugeXi[ U[2] ] = GaugeXi[Z]; |

42 | GaugeXi[ U[31] ] = GaugeXi[W]; |

43 | GaugeXi[ U[32] ] = GaugeXi[W]; |

44 | GaugeXi[ U[4] ] = GaugeXi[G]; |

45 | |

46 | (**************** Parameters *************) |

47 | |

48 | M$Parameters = { |

49 | |

50 | (* External parameters, SM *) |

51 | |

52 | \[Alpha]EWM1== { |

53 | ParameterType -> External, |

54 | BlockName -> SMINPUTS, |

55 | ParameterName -> aEWM1, |

56 | InteractionOrder -> {QED, -2}, |

57 | Value -> 127.9, |

58 | Description -> "Inverse of the electroweak coupling constant"}, |

59 | |

60 | Gf == { |

61 | ParameterType -> External, |

62 | BlockName -> SMINPUTS, |

63 | TeX -> Subscript[G, f], |

64 | InteractionOrder -> {QED, 2}, |

65 | Value -> 1.16600 * 10^(-5), |

66 | Description -> "Fermi constant"}, |

67 | |

68 | \[Alpha]S == { |

69 | ParameterType -> External, |

70 | BlockName -> SMINPUTS, |

71 | TeX -> Subscript[\[Alpha], s], |

72 | ParameterName -> aS, |

73 | InteractionOrder -> {QCD, 2}, |

74 | Value -> 0.118, |

75 | Description -> "Strong coupling constant at the Z pole."}, |

76 | |

77 | ymdo == { |

78 | ParameterType -> External, |

79 | BlockName -> YUKAWA, |

80 | Value -> 5.04*10^(-3), |

81 | OrderBlock -> {1}, |

82 | Description -> "Down Yukawa mass"}, |

83 | |

84 | ymup == { |

85 | ParameterType -> External, |

86 | BlockName -> YUKAWA, |

87 | Value -> 2.55*10^(-3), |

88 | OrderBlock -> {2}, |

89 | Description -> "Up Yukawa mass"}, |

90 | |

91 | yms == { |

92 | ParameterType -> External, |

93 | BlockName -> YUKAWA, |

94 | Value -> 0.101, |

95 | OrderBlock -> {3}, |

96 | Description -> "Strange Yukawa mass"}, |

97 | |

98 | ymc == { |

99 | ParameterType -> External, |

100 | BlockName -> YUKAWA, |

101 | Value -> 1.25, |

102 | OrderBlock -> {4}, |

103 | Description -> "Charm Yukawa mass"}, |

104 | |

105 | ymb == { |

106 | ParameterType -> External, |

107 | BlockName -> YUKAWA, |

108 | Value -> 4.2, |

109 | OrderBlock -> {5}, |

110 | Description -> "Bottom Yukawa mass"}, |

111 | |

112 | ymt == { |

113 | ParameterType -> External, |

114 | BlockName -> YUKAWA, |

115 | Value -> 174.3, |

116 | OrderBlock -> {6}, |

117 | Description -> "Top Yukawa mass"}, |

118 | |

119 | yme == { |

120 | ParameterType -> External, |

121 | BlockName -> YUKAWA, |

122 | Value -> 5.11*10^(-4), |

123 | OrderBlock -> {11}, |

124 | Description -> "Electron Yukawa mass"}, |

125 | |

126 | ymm == { |

127 | ParameterType -> External, |

128 | BlockName -> YUKAWA, |

129 | Value -> 0.10566, |

130 | OrderBlock -> {13}, |

131 | Description -> "Muon Yukawa mass"}, |

132 | |

133 | ymtau == { |

134 | ParameterType -> External, |

135 | BlockName -> YUKAWA, |

136 | Value -> 1.777, |

137 | OrderBlock -> {15}, |

138 | Description -> "Tau Yukawa mass"}, |

139 | |

140 | CKM == { |

141 | ParameterType -> External, |

142 | BlockName -> CKMBlock, |

143 | ComplexParameter -> False, |

144 | Indices -> {Index[Generation], Index[Generation]}, |

145 | TensorClass -> CKM, |

146 | Unitary -> True, |

147 | Value -> {CKM[1,1] -> 0.97428, |

148 | CKM[1,2] -> 0.2253, |

149 | CKM[1,3] -> 0.00347, |

150 | CKM[2,1] -> 0.2252, |

151 | CKM[2,2] -> 0.97345, |

152 | CKM[2,3] -> 0.0410, |

153 | CKM[3,1] -> 0.00862, |

154 | CKM[3,2] -> 0.0403, |

155 | CKM[3,3] -> 0.999152}, |

156 | Description -> "SM CKM Matrix"}, |

157 | |

158 | (* External parameters, VLQ *) |

159 | |

160 | Gvl == { |

161 | TeX -> Subscript[g, VL], |

162 | ParameterType -> External, |

163 | BlockName -> Gvl, |

164 | ComplexParameter -> False, |

165 | Value -> 1, |

166 | Description -> "VL-VL-gauge factor multiplying SM coupling"}, |

167 | |

168 | gstar == { |

169 | ParameterType -> External, |

170 | BlockName -> Kappa, |

171 | ComplexParameter -> False, |

172 | Value -> 0.1, |

173 | Description -> "gstar"}, |

174 | |

175 | RL == { |

176 | ParameterType -> External, |

177 | BlockName -> Zeta, |

178 | ComplexParameter -> False, |

179 | Value -> 1, |

180 | Description -> "RL rate into light"}, |

181 | |

182 | KB == { |

183 | ParameterType -> Internal, |

184 | BlockName -> Kappa, |

185 | ComplexParameter -> False, |

186 | Value -> gstar, |

187 | Description -> "Kappa_B parameter"}, |

188 | |

189 | zetaBdL == { |

190 | ParameterType -> Internal, |

191 | BlockName -> Zeta, |

192 | ComplexParameter -> False, |

193 | Value -> RL/(1+RL), |

194 | Description -> "B-d mixing (left-handed)"}, |

195 | |

196 | zetaBsL == { |

197 | ParameterType -> Internal, |

198 | BlockName -> Zeta, |

199 | ComplexParameter -> False, |

200 | Value -> 0, |

201 | Description -> "B-s mixing (left-handed)"}, |

202 | |

203 | zetaBbL == { |

204 | ParameterType -> Internal, |

205 | BlockName -> Zeta, |

206 | ComplexParameter -> False, |

207 | Value -> 1/(1+RL), |

208 | Description -> "B-b mixing (left-handed)"}, |

209 | |

210 | zetaBdR == { |

211 | ParameterType -> Internal, |

212 | BlockName -> Zeta, |

213 | ComplexParameter -> False, |

214 | Value -> 0, |

215 | Description -> "B-d mixing (right-handed)"}, |

216 | |

217 | zetaBsR == { |

218 | ParameterType -> Internal, |

219 | BlockName -> Zeta, |

220 | ComplexParameter -> False, |

221 | Value -> 0, |

222 | Description -> "B-s mixing (right-handed)"}, |

223 | |

224 | zetaBbR == { |

225 | ParameterType -> Internal, |

226 | BlockName -> Zeta, |

227 | ComplexParameter -> False, |

228 | Value -> 0, |

229 | Description -> "B-b mixing (right-handed)"}, |

230 | |

231 | |

232 | (* Internal Parameters, SM *) |

233 | |

234 | \[Alpha]EW == { |

235 | ParameterType -> Internal, |

236 | Value -> 1/\[Alpha]EWM1, |

237 | TeX -> Subscript[\[Alpha], EW], |

238 | ParameterName -> aEW, |

239 | InteractionOrder -> {QED, 2}, |

240 | Description -> "Electroweak coupling constant"}, |

241 | |

242 | |

243 | MW == { |

244 | ParameterType -> Internal, |

245 | Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]], |

246 | TeX -> Subscript[M, W], |

247 | Description -> "W mass"}, |

248 | |

249 | sw2 == { |

250 | ParameterType -> Internal, |

251 | Value -> 1-(MW/MZ)^2, |

252 | Description -> "Squared Sin of the Weinberg angle"}, |

253 | |

254 | ee == { |

255 | TeX -> e, |

256 | ParameterType -> Internal, |

257 | Value -> Sqrt[4 Pi \[Alpha]EW], |

258 | InteractionOrder -> {QED, 1}, |

259 | Description -> "Electric coupling constant"}, |

260 | |

261 | cw == { |

262 | TeX -> Subscript[c, w], |

263 | ParameterType -> Internal, |

264 | Value -> Sqrt[1 - sw2], |

265 | Description -> "Cos of the Weinberg angle"}, |

266 | |

267 | sw == { |

268 | TeX -> Subscript[s, w], |

269 | ParameterType -> Internal, |

270 | Value -> Sqrt[sw2], |

271 | Description -> "Sin of the Weinberg angle"}, |

272 | |

273 | gw == { |

274 | TeX -> Subscript[g, w], |

275 | ParameterType -> Internal, |

276 | Value -> ee / sw, |

277 | InteractionOrder -> {QED, 1}, |

278 | Description -> "Weak coupling constant"}, |

279 | |

280 | g1 == { |

281 | TeX -> Subscript[g, 1], |

282 | ParameterType -> Internal, |

283 | Value -> ee / cw, |

284 | InteractionOrder -> {QED, 1}, |

285 | Description -> "U(1)Y coupling constant"}, |

286 | |

287 | gs == { |

288 | TeX -> Subscript[g, s], |

289 | ParameterType -> Internal, |

290 | Value -> Sqrt[4 Pi \[Alpha]S], |

291 | InteractionOrder -> {QCD, 1}, |

292 | ParameterName -> G, |

293 | Description -> "Strong coupling constant"}, |

294 | |

295 | v == { |

296 | ParameterType -> Internal, |

297 | Value -> 2*MW*sw/ee, |

298 | InteractionOrder -> {QED, -1}, |

299 | Description -> "Higgs VEV"}, |

300 | |

301 | \[Lambda] == { |

302 | ParameterType -> Internal, |

303 | Value -> MH^2/(2*v^2), |

304 | InteractionOrder -> {QED, 2}, |

305 | ParameterName -> lam, |

306 | Description -> "Higgs quartic coupling"}, |

307 | |

308 | muH == { |

309 | ParameterType -> Internal, |

310 | Value -> Sqrt[v^2 \[Lambda]], |

311 | TeX -> \[Mu], |

312 | Description -> "Coefficient of the quadratic piece of the Higgs potential"}, |

313 | |

314 | yl == { |

315 | TeX -> Superscript[y, l], |

316 | Indices -> {Index[Generation]}, |

317 | AllowSummation -> True, |

318 | ParameterType -> Internal, |

319 | Value -> {yl[1] -> Sqrt[2] yme / v, yl[2] -> Sqrt[2] ymm / v, yl[3] -> Sqrt[2] ymtau / v}, |

320 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau}, |

321 | InteractionOrder -> {QED, 1}, |

322 | ComplexParameter -> False, |

323 | Description -> "Lepton Yukawa coupling"}, |

324 | |

325 | yu == { |

326 | TeX -> Superscript[y, u], |

327 | Indices -> {Index[Generation]}, |

328 | AllowSummation -> True, |

329 | ParameterType -> Internal, |

330 | Value -> {yu[1] -> Sqrt[2] ymup / v, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v}, |

331 | ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt}, |

332 | InteractionOrder -> {QED, 1}, |

333 | ComplexParameter -> False, |

334 | Description -> "U-quark Yukawa coupling"}, |

335 | |

336 | yd == { |

337 | TeX -> Superscript[y, d], |

338 | Indices -> {Index[Generation]}, |

339 | AllowSummation -> True, |

340 | ParameterType -> Internal, |

341 | Value -> {yd[1] -> Sqrt[2] ymdo / v, yd[2] -> Sqrt[2] yms / v, yd[3] -> Sqrt[2] ymb / v}, |

342 | ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb}, |

343 | InteractionOrder -> {QED, 1}, |

344 | ComplexParameter -> False, |

345 | Description -> "D-quark Yukawa coupling"}, |

346 | |

347 | |

348 | (************** Internal Parameters, VLQ **************) |

349 | |

350 | |

351 | (* B couplings *) |

352 | |

353 | KBdLw == { |

354 | ParameterType -> Internal, |

355 | BlockName -> Kappa, |

356 | ComplexParameter -> False, |

357 | Value -> (ee/sw*Sqrt[zetaBdL])/Sqrt[2], |

358 | InteractionOrder -> {QED, 1}, |

359 | Description -> "BdW coupling (left-handed)"}, |

360 | |

361 | KBsLw == { |

362 | ParameterType -> Internal, |

363 | BlockName -> Kappa, |

364 | ComplexParameter -> False, |

365 | Value -> (ee/sw*Sqrt[zetaBsL])/Sqrt[2], |

366 | InteractionOrder -> {QED, 1}, |

367 | Description -> "BsW coupling (left-handed)"}, |

368 | |

369 | KBbLw == { |

370 | ParameterType -> Internal, |

371 | BlockName -> Kappa, |

372 | ComplexParameter -> False, |

373 | Value -> (gw*Sqrt[zetaBbL])/Sqrt[2], |

374 | InteractionOrder -> {QED, 1}, |

375 | Description -> "BbW coupling (left-handed)"}, |

376 | |

377 | KBdRw == { |

378 | ParameterType -> Internal, |

379 | BlockName -> Kappa, |

380 | ComplexParameter -> False, |

381 | Value -> (ee/sw*Sqrt[zetaBdR])/Sqrt[2], |

382 | InteractionOrder -> {QED, 1}, |

383 | Description -> "BdW coupling (right-handed)"}, |

384 | |

385 | KBsRw == { |

386 | ParameterType -> Internal, |

387 | BlockName -> Kappa, |

388 | ComplexParameter -> False, |

389 | Value -> (gw*Sqrt[zetaBsR])/Sqrt[2], |

390 | InteractionOrder -> {QED, 1}, |

391 | Description -> "BsW coupling (right-handed)"}, |

392 | |

393 | KBbRw == { |

394 | ParameterType -> Internal, |

395 | BlockName -> Kappa, |

396 | ComplexParameter -> False, |

397 | Value -> (gw*Sqrt[zetaBbR])/Sqrt[2], |

398 | InteractionOrder -> {QED, 1}, |

399 | Description -> "BbW coupling (right-handed)"}, |

400 | |

401 | KBdLz == { |

402 | ParameterType -> Internal, |

403 | BlockName -> Kappa, |

404 | ComplexParameter -> False, |

405 | Value -> (gw*Sqrt[zetaBdL])/2/cw, |

406 | InteractionOrder -> {QED, 1}, |

407 | Description -> "BdZ coupling (left-handed)"}, |

408 | |

409 | KBsLz == { |

410 | ParameterType -> Internal, |

411 | BlockName -> Kappa, |

412 | ComplexParameter -> False, |

413 | Value -> (gw*Sqrt[zetaBsL])/2/cw, |

414 | InteractionOrder -> {QED, 1}, |

415 | Description -> "BsZ coupling (left-handed)"}, |

416 | |

417 | KBbLz == { |

418 | ParameterType -> Internal, |

419 | BlockName -> Kappa, |

420 | ComplexParameter -> False, |

421 | Value -> (gw*Sqrt[zetaBbL])/2/cw, |

422 | InteractionOrder -> {QED, 1}, |

423 | Description -> "BbZ coupling (left-handed)"}, |

424 | |

425 | KBdRz == { |

426 | ParameterType -> Internal, |

427 | BlockName -> Kappa, |

428 | ComplexParameter -> False, |

429 | Value -> (gw*Sqrt[zetaBdR])/2/cw, |

430 | InteractionOrder -> {QED, 1}, |

431 | Description -> "BdZ coupling (right-handed)"}, |

432 | |

433 | KBsRz == { |

434 | ParameterType -> Internal, |

435 | BlockName -> Kappa, |

436 | ComplexParameter -> False, |

437 | Value -> (gw*Sqrt[zetaBsR])/2/cw, |

438 | InteractionOrder -> {QED, 1}, |

439 | Description -> "BsZ coupling (right-handed)"}, |

440 | |

441 | KBbRz == { |

442 | ParameterType -> Internal, |

443 | BlockName -> Kappa, |

444 | ComplexParameter -> False, |

445 | Value -> (gw*Sqrt[zetaBbR])/2/cw, |

446 | InteractionOrder -> {QED, 1}, |

447 | Description -> "BbZ coupling (right-handed)"}, |

448 | |

449 | KBdLh == { |

450 | ParameterType -> Internal, |

451 | BlockName -> Kappa, |

452 | ComplexParameter -> False, |

453 | Value -> (Sqrt[zetaBdL]), |

454 | InteractionOrder -> {QED, 0}, |

455 | Description -> "BdH coupling (left-handed)"}, |

456 | |

457 | KBsLh == { |

458 | ParameterType -> Internal, |

459 | BlockName -> Kappa, |

460 | ComplexParameter -> False, |

461 | Value -> (Sqrt[zetaBsL]), |

462 | InteractionOrder -> {QED, 0}, |

463 | Description -> "BsH coupling (left-handed)"}, |

464 | |

465 | KBbLh == { |

466 | ParameterType -> Internal, |

467 | BlockName -> Kappa, |

468 | ComplexParameter -> False, |

469 | Value -> (Sqrt[zetaBbL]), |

470 | InteractionOrder -> {QED, 0}, |

471 | Description -> "BbH coupling (left-handed)"}, |

472 | |

473 | KBdRh == { |

474 | ParameterType -> Internal, |

475 | BlockName -> Kappa, |

476 | ComplexParameter -> False, |

477 | Value -> (Sqrt[zetaBdR]), |

478 | InteractionOrder -> {QED, 0}, |

479 | Description -> "BdH coupling (right-handed)"}, |

480 | |

481 | KBsRh == { |

482 | ParameterType -> Internal, |

483 | BlockName -> Kappa, |

484 | ComplexParameter -> False, |

485 | Value -> (Sqrt[zetaBsR]), |

486 | InteractionOrder -> {QED, 0}, |

487 | Description -> "BsH coupling (right-handed)"}, |

488 | |

489 | KBbRh == { |

490 | ParameterType -> Internal, |

491 | BlockName -> Kappa, |

492 | ComplexParameter -> False, |

493 | Value -> (Sqrt[zetaBbR]), |

494 | InteractionOrder -> {QED, 0}, |

495 | Description -> "BbH coupling (right-handed)"} |

496 | |

497 | } |

498 | |

499 | |

500 | (************** Gauge Groups ******************) |

501 | |

502 | M$GaugeGroups = { |

503 | |

504 | U1Y == { |

505 | Abelian -> True, |

506 | GaugeBoson -> B, |

507 | Charge -> Y, |

508 | CouplingConstant -> g1}, |

509 | |

510 | SU2L == { |

511 | Abelian -> False, |

512 | GaugeBoson -> Wi, |

513 | StructureConstant -> Eps, |

514 | CouplingConstant -> gw}, |

515 | |

516 | SU3C == { |

517 | Abelian -> False, |

518 | GaugeBoson -> G, |

519 | StructureConstant -> f, |

520 | SymmetricTensor -> dSUN, |

521 | Representations -> {T, Colour}, |

522 | CouplingConstant -> gs} |

523 | } |

524 | |

525 | (********* Particle Classes **********) |

526 | |

527 | M$ClassesDescription = { |

528 | |

529 | (********** Fermions ************) |

530 | (* Leptons (neutrino): I_3 = +1/2, Q = 0 *) |

531 | F[1] == { |

532 | ClassName -> vl, |

533 | ClassMembers -> {ve,vm,vt}, |

534 | FlavorIndex -> Generation, |

535 | SelfConjugate -> False, |

536 | Indices -> {Index[Generation]}, |

537 | Mass -> 0, |

538 | Width -> 0, |

539 | QuantumNumbers -> {LeptonNumber -> 1}, |

540 | PropagatorLabel -> {"v", "ve", "vm", "vt"} , |

541 | PropagatorType -> S, |

542 | PropagatorArrow -> Forward, |

543 | PDG -> {12,14,16}, |

544 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} }, |

545 | |

546 | (* Leptons (electron): I_3 = -1/2, Q = -1 *) |

547 | F[2] == { |

548 | ClassName -> l, |

549 | ClassMembers -> {e, m, tt}, |

550 | FlavorIndex -> Generation, |

551 | SelfConjugate -> False, |

552 | Indices -> {Index[Generation]}, |

553 | Mass -> {Ml, {Me, 5.11 * 10^(-4)}, {MM, 0.10566}, {MTA, 1.777}}, |

554 | Width -> 0, |

555 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}, |

556 | PropagatorLabel -> {"l", "e", "m", "tt"}, |

557 | PropagatorType -> Straight, |

558 | ParticleName -> {"e-", "m-", "tt-"}, |

559 | AntiParticleName -> {"e+", "m+", "tt+"}, |

560 | PropagatorArrow -> Forward, |

561 | PDG -> {11, 13, 15}, |

562 | FullName -> {"Electron", "Muon", "Tau"} }, |

563 | |

564 | (* Quarks (u): I_3 = +1/2, Q = +2/3 *) |

565 | F[3] == { |

566 | ClassMembers -> {u, c, t}, |

567 | ClassName -> uq, |

568 | FlavorIndex -> Generation, |

569 | SelfConjugate -> False, |

570 | Indices -> {Index[Generation], Index[Colour]}, |

571 | Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.40}, {MT, 174.3}}, |

572 | Width -> {0, 0, {WT, 1.51013490}}, |

573 | QuantumNumbers -> {Q -> 2/3}, |

574 | PropagatorLabel -> {"uq", "u", "c", "t"}, |

575 | PropagatorType -> Straight, |

576 | PropagatorArrow -> Forward, |

577 | PDG -> {2, 4, 6}, |

578 | FullName -> {"u-quark", "c-quark", "t-quark"}}, |

579 | |

580 | (* Quarks (d): I_3 = -1/2, Q = -1/3 *) |

581 | F[4] == { |

582 | ClassMembers -> {d, s, b}, |

583 | ClassName -> dq, |

584 | FlavorIndex -> Generation, |

585 | SelfConjugate -> False, |

586 | Indices -> {Index[Generation], Index[Colour]}, |

587 | Mass -> {Md, {MD, 5.04*10^(-3)}, {MS, 0.101}, {MB, 4.2}}, |

588 | Width -> 0, |

589 | QuantumNumbers -> {Q -> -1/3}, |

590 | PropagatorLabel -> {"dq", "d", "s", "b"}, |

591 | PropagatorType -> Straight, |

592 | PropagatorArrow -> Forward, |

593 | PDG -> {1,3,5}, |

594 | FullName -> {"d-quark", "s-quark", "b-quark"} }, |

595 | |

596 | |

597 | (* VLQ Quarks B, Q=-1/3 *) |

598 | F[7] == { |

599 | ClassName -> bpq, |

600 | ClassMembers -> {bp}, |

601 | SelfConjugate -> False, |

602 | Indices -> {Index[Colour]}, |

603 | Mass -> {{MQ,1000}}, |

604 | Width -> {{WBP, 1}}, |

605 | QuantumNumbers -> {Q -> -1/3}, |

606 | PropagatorLabel -> {"bp"}, |

607 | PropagatorType -> Straight, |

608 | PropagatorArrow -> Forward, |

609 | PDG -> {6000007}, |

610 | FullName -> {"B-quark"}}, |

611 | |

612 | |

613 | (********** Ghosts **********) |

614 | U[1] == { |

615 | ClassName -> ghA, |

616 | SelfConjugate -> False, |

617 | Indices -> {}, |

618 | Ghost -> A, |

619 | Mass -> 0, |

620 | QuantumNumbers -> {GhostNumber -> 1}, |

621 | PropagatorLabel -> uA, |

622 | PropagatorType -> GhostDash, |

623 | PropagatorArrow -> Forward}, |

624 | |

625 | U[2] == { |

626 | ClassName -> ghZ, |

627 | SelfConjugate -> False, |

628 | Indices -> {}, |

629 | Mass -> {MZ, 91.1876}, |

630 | Ghost -> Z, |

631 | QuantumNumbers -> {GhostNumber -> 1}, |

632 | PropagatorLabel -> uZ, |

633 | PropagatorType -> GhostDash, |

634 | PropagatorArrow -> Forward}, |

635 | |

636 | U[31] == { |

637 | ClassName -> ghWp, |

638 | SelfConjugate -> False, |

639 | Indices -> {}, |

640 | Mass -> {MW, Internal}, |

641 | Ghost -> W, |

642 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1}, |

643 | PropagatorLabel -> uWp, |

644 | PropagatorType -> GhostDash, |

645 | PropagatorArrow -> Forward}, |

646 | |

647 | U[32] == { |

648 | ClassName -> ghWm, |

649 | SelfConjugate -> False, |

650 | Indices -> {}, |

651 | Mass -> {MW, Internal}, |

652 | Ghost -> Wbar, |

653 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1}, |

654 | PropagatorLabel -> uWm, |

655 | PropagatorType -> GhostDash, |

656 | PropagatorArrow -> Forward}, |

657 | |

658 | U[4] == { |

659 | ClassName -> ghG, |

660 | SelfConjugate -> False, |

661 | Indices -> {Index[Gluon]}, |

662 | Ghost -> G, |

663 | Mass -> 0, |

664 | QuantumNumbers -> {GhostNumber -> 1}, |

665 | PropagatorLabel -> uG, |

666 | PropagatorType -> GhostDash, |

667 | PropagatorArrow -> Forward}, |

668 | |

669 | U[5] == { |

670 | ClassName -> ghWi, |

671 | Unphysical -> True, |

672 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2], |

673 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I, |

674 | ghWi[3] -> cw ghZ + sw ghA}, |

675 | SelfConjugate -> False, |

676 | Ghost -> Wi, |

677 | Indices -> {Index[SU2W]}, |

678 | FlavorIndex -> SU2W}, |

679 | |

680 | U[6] == { |

681 | ClassName -> ghB, |

682 | SelfConjugate -> False, |

683 | Definitions -> {ghB -> -sw ghZ + cw ghA}, |

684 | Indices -> {}, |

685 | Ghost -> B, |

686 | Unphysical -> True}, |

687 | |

688 | (************ Gauge Bosons ***************) |

689 | (* Gauge bosons: Q = 0 *) |

690 | V[1] == { |

691 | ClassName -> A, |

692 | SelfConjugate -> True, |

693 | Indices -> {}, |

694 | Mass -> 0, |

695 | Width -> 0, |

696 | PropagatorLabel -> "a", |

697 | PropagatorType -> W, |

698 | PropagatorArrow -> None, |

699 | PDG -> 22, |

700 | FullName -> "Photon" }, |

701 | |

702 | V[2] == { |

703 | ClassName -> Z, |

704 | SelfConjugate -> True, |

705 | Indices -> {}, |

706 | Mass -> {MZ, 91.1876}, |

707 | Width -> {WZ, 2.44639985}, |

708 | PropagatorLabel -> "Z", |

709 | PropagatorType -> Sine, |

710 | PropagatorArrow -> None, |

711 | PDG -> 23, |

712 | FullName -> "Z" }, |

713 | |

714 | (* Gauge bosons: Q = -1 *) |

715 | V[3] == { |

716 | ClassName -> W, |

717 | SelfConjugate -> False, |

718 | Indices -> {}, |

719 | Mass -> {MW, Internal}, |

720 | Width -> {WW, 2.03535570}, |

721 | QuantumNumbers -> {Q -> 1}, |

722 | PropagatorLabel -> "W", |

723 | PropagatorType -> Sine, |

724 | PropagatorArrow -> Forward, |

725 | ParticleName ->"W+", |

726 | AntiParticleName ->"W-", |

727 | PDG -> 24, |

728 | FullName -> "W" }, |

729 | |

730 | V[4] == { |

731 | ClassName -> G, |

732 | SelfConjugate -> True, |

733 | Indices -> {Index[Gluon]}, |

734 | Mass -> 0, |

735 | Width -> 0, |

736 | PropagatorLabel -> G, |

737 | PropagatorType -> C, |

738 | PropagatorArrow -> None, |

739 | PDG -> 21, |

740 | FullName -> "G" }, |

741 | |

742 | V[5] == { |

743 | ClassName -> Wi, |

744 | Unphysical -> True, |

745 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2], |

746 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I, |

747 | Wi[mu_, 3] -> cw Z[mu] + sw A[mu]}, |

748 | SelfConjugate -> True, |

749 | Indices -> {Index[SU2W]}, |

750 | FlavorIndex -> SU2W, |

751 | Mass -> 0, |

752 | PDG -> {1,2,3}}, |

753 | |

754 | V[6] == { |

755 | ClassName -> B, |

756 | SelfConjugate -> True, |

757 | Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]}, |

758 | Indices -> {}, |

759 | Mass -> 0, |

760 | Unphysical -> True}, |

761 | |

762 | |

763 | (************ Scalar Fields **********) |

764 | (* physical Higgs: Q = 0 *) |

765 | S[1] == { |

766 | ClassName -> H, |

767 | SelfConjugate -> True, |

768 | Mass -> {MH, 125}, |

769 | Width -> {WH, 0.00679485838}, |

770 | PropagatorLabel -> "H", |

771 | PropagatorType -> D, |

772 | PropagatorArrow -> None, |

773 | PDG -> 25, |

774 | TeXParticleName -> "\\phi", |

775 | TeXClassName -> "\\phi", |

776 | FullName -> "H" }, |

777 | |

778 | S[2] == { |

779 | ClassName -> phi, |

780 | SelfConjugate -> True, |

781 | Mass -> {MZ, 91.5445065}, |

782 | Width -> Wphi, |

783 | PropagatorLabel -> "Phi", |

784 | PropagatorType -> D, |

785 | PropagatorArrow -> None, |

786 | ParticleName ->"phi0", |

787 | PDG -> 250, |

788 | FullName -> "Phi", |

789 | Goldstone -> Z }, |

790 | |

791 | S[3] == { |

792 | ClassName -> phi2, |

793 | SelfConjugate -> False, |

794 | Mass -> {MW, Internal}, |

795 | Width -> Wphi2, |

796 | PropagatorLabel -> "Phi2", |

797 | PropagatorType -> D, |

798 | PropagatorArrow -> None, |

799 | ParticleName ->"phi+", |

800 | AntiParticleName ->"phi-", |

801 | PDG -> 251, |

802 | FullName -> "Phi2", |

803 | TeXClassName -> "\\phi^+", |

804 | TeXParticleName -> "\\phi^+", |

805 | TeXAntiParticleName -> "\\phi^-", |

806 | Goldstone -> W, |

807 | QuantumNumbers -> {Q -> 1}} |

808 | } |

809 | |

810 | |

811 | (*****************************************************************************************) |

812 | |

813 | (* SM Lagrangian *) |

814 | |

815 | (******************** Gauge F^2 Lagrangian terms*************************) |

816 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*) |

817 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])* |

818 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) - |

819 | |

820 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 - |

821 | |

822 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])* |

823 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]); |

824 | |

825 | |

826 | (********************* Fermion Lagrangian terms*************************) |

827 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*) |

828 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright}, |

829 | |

830 | Lkin = I uqbar.Ga[mu].del[uq, mu] + |

831 | I dqbar.Ga[mu].del[dq, mu] + |

832 | I lbar.Ga[mu].del[l, mu] + |

833 | I vlbar.Ga[mu].del[vl, mu]; |

834 | |

835 | LQCD = gs (uqbar.Ga[mu].T[a].uq + |

836 | dqbar.Ga[mu].T[a].dq)G[mu, a]; |

837 | |

838 | LBright = |

839 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*) |

840 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*) |

841 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*) |

842 | |

843 | LBleft = |

844 | -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl - (*Y_LL=-1*) |

845 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*) |

846 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*) |

847 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*) |

848 | |

849 | LWleft = ee/sw/2( |

850 | vlbar.Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*) |

851 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*) |

852 | |

853 | Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] + |

854 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+ |

855 | |

856 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*) |

857 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*) |

858 | |

859 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] + |

860 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu] |

861 | ); |

862 | |

863 | Lkin + LQCD + LBright + LBleft + LWleft]; |

864 | |

865 | |

866 | (** Note : Modifications to the SM W and Z currents should be considered here above **) |

867 | |

868 | (******************** Higgs Lagrangian terms****************************) |

869 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}]; |

870 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}]; |

871 | |

872 | |

873 | |

874 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi}, |

875 | |

876 | PMVec = Table[PauliSigma[i], {i, 3}]; |

877 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]}; |

878 | |

879 | (*Y_phi=1*) |

880 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f; |

881 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec); |

882 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2; |

883 | |

884 | (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]]; |

885 | |

886 | |

887 | (*************** Yukawa Lagrangian***********************) |

888 | LYuk := If[FeynmanGauge, |

889 | |

890 | Module[{s,r,n,m,i}, - |

891 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) - |

892 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2] - |

893 | |

894 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2] + (*This sign from eps matrix*) |

895 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar) - |

896 | |

897 | yl[n] vlbar[s,n].ProjP[s,r].l[r,n] (-I phi2) - |

898 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H +I phi)/Sqrt[2] |

899 | ], |

900 | |

901 | Module[{s,r,n,m,i}, - |

902 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] - |

903 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] - |

904 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2] |

905 | ] |

906 | ]; |

907 | |

908 | LYukawa := LYuk + HC[LYuk]; |

909 | |

910 | (** Note : Modifications to the SM H currents should be considered here above **) |

911 | |

912 | (**************Ghost terms**************************) |

913 | (* Now we need the ghost terms which are of the form: *) |

914 | (* - g * antighost * d_BRST G *) |

915 | (* where d_BRST G is BRST transform of the gauge fixing function. *) |

916 | |

917 | LGhost := If[FeynmanGauge, |

918 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB}, |

919 | |

920 | (***********First the pure gauge piece.**********************) |

921 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]]; |

922 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu]; |

923 | |

924 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ]; |

925 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu]; |

926 | |

927 | dBRSTB[mu_] := cw/ee del[ghB, mu]; |

928 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu]; |

929 | |

930 | (***********Next the piece from the scalar field.************) |

931 | LGhostphi := - ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) + |

932 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) - |

933 | ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm ) - |

934 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) - |

935 | ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ; |

936 | |

937 | |

938 | (***********Now add the pieces together.********************) |

939 | LGhostG + LGhostWi + LGhostB + LGhostphi] |

940 | |

941 | , |

942 | |

943 | (*If unitary gauge, only include the gluonic ghost.*) |

944 | Block[{dBRSTG,LGhostG}, |

945 | |

946 | (***********First the pure gauge piece.**********************) |

947 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]]; |

948 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu]; |

949 | |

950 | (***********Now add the pieces together.********************) |

951 | LGhostG] |

952 | |

953 | ]; |

954 | |

955 | (*********SM Lagrangian*******) |

956 | LSM := LGauge + LHiggs + LFermions + LYukawa + LGhost; |

957 | |

958 | |

959 | (*********VLQ Lagrangians*******) |

960 | (** We assume that the physical and mass eigenstates match for vector-like quarks **) |

961 | |

962 | (*********LB, EW interactions*******) |

963 | |

964 | LBW := |

965 | +KB*KBdLw*(bpbar.Wbar[mu].Ga[mu].ProjM.u)+KB*KBdRw*(bpbar.Wbar[mu].Ga[mu].ProjP.u)+KB*KBdLw*(ubar.W[mu].Ga[mu].ProjM.bp)+KB*KBdRw*(ubar.W[mu].Ga[mu].ProjP.bp)+KB*KBsLw*(bpbar.Wbar[mu].Ga[mu].ProjM.c)+KB*KBsRw*(bpbar.Wbar[mu].Ga[mu].ProjP.c)+KB*KBsLw*(cbar.W[mu].Ga[mu].ProjM.bp)+KB*KBsRw*(cbar.W[mu].Ga[mu].ProjP.bp)+KB*KBbLw*(bpbar.Wbar[mu].Ga[mu].ProjM.t)+KB*KBbRw*(bpbar.Wbar[mu].Ga[mu].ProjP.t)+KB*KBbLw*(tbar.W[mu].Ga[mu].ProjM.bp)+KB*KBbRw*(tbar.W[mu].Ga[mu].ProjP.bp); |

966 | |

967 | LBZ :=+KB*KBdLz*(bpbar.Z[mu].Ga[mu].ProjM.d)+KB*KBdRz*(bpbar.Z[mu].Ga[mu].ProjP.d)+KB*KBdLz*(dbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBdRz*(dbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBsLz*(bpbar.Z[mu].Ga[mu].ProjM.s)+KB*KBsRz*(bpbar.Z[mu].Ga[mu].ProjP.s)+KB*KBsLz*(sbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBsRz*(sbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBbLz*(bpbar.Z[mu].Ga[mu].ProjM.b)+KB*KBbRz*(bpbar.Z[mu].Ga[mu].ProjP.b)+KB*KBbLz*(bbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBbRz*(bbar.Z[mu].Ga[mu].ProjP.bp); |

968 | |

969 | LBH:=-KB*MQ*KBdLh*(bpbar.H.ProjP.d)/v-KB*MQ*KBdLh*(dbar.H.ProjM.bp)/v-KB*MQ*KBdRh*(bpbar.H.ProjM.d)/v-KB*MQ*KBdRh*(dbar.H.ProjP.bp)/v-KB*MQ*KBsLh*(bpbar.H.ProjP.s)/v-KB*MQ*KBsLh*(sbar.H.ProjM.bp)/v-KB*MQ*KBsRh*(bpbar.H.ProjM.s)/v-KB*MQ*KBsRh*(sbar.H.ProjP.bp)/v-KB*MQ*KBbLh*(bpbar.H.ProjP.b)/v-KB*MQ*KBbLh*(bbar.H.ProjM.bp)/v-KB*MQ*KBbRh*(bpbar.H.ProjM.b)/v-KB*MQ*KBbRh*(bbar.H.ProjP.bp)/v; |

970 | |

971 | |

972 | |

973 | (*********B-gauge interaction*******) |

974 | |

975 | LBVL = Gvl*ee/cw/3 B[mu]/2 bpbar.Ga[mu].bp; (*Y_QL=1/3*) |

976 | |

977 | LWVL = Gvl*ee/sw/2(bpbar.Ga[mu].bp Wi[mu,3]) |

978 | |

979 | |

980 | (*********Kinetic, mass & QCD lagrangians for VLQ*******) |

981 | |

982 | LBK := I bpbar.Ga[mu].del[bp, mu]; |

983 | |

984 | LBM := -MQ.bpbar.bp; |

985 | |

986 | LBG := gs (bpbar.Ga[mu].T[a].bp)G[mu, a]; |

987 | |

988 | LBK := I bpbar.Ga[mu].del[bp, mu]; |

989 | |

990 | LBM := -MQ.bpbar.bp; |

991 | |

992 | LBG := gs (bpbar.Ga[mu].T[a].bp)G[mu, a]; |

993 | |

994 | |

995 | LB := LBW + LBZ + LBH + LBK + LBM + LBG; |

996 | |

997 | LVLQ := LB + LBVL + LWVL; |

998 | |

999 | |

1000 | |

1001 | (*********Total Lagrangian*******) |

1002 | |

1003 | L := LSM + LVLQ; |

1004 | |

1005 |