topBSM: topBSM.nb

File topBSM.nb, 515.3 KB (added by stefankrastanov, 7 years ago)
Line 
1(* Content-type: application/mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 6.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[       145,          7]
13NotebookDataLength[    527472,      12032]
14NotebookOptionsPosition[    505408,      11358]
15NotebookOutlinePosition[    506063,      11381]
16CellTagsIndexPosition[    506020,      11378]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21Cell[BoxData[Cell["topBSM", "Title",
22  CellChangeTimes->{{3.576909642338835*^9, 3.5769096553571987`*^9}}]], "Input",\
23
24 CellChangeTimes->{{3.576995731423401*^9, 3.576995734864747*^9}}],
25
26Cell[CellGroupData[{
27
28Cell["Initialization", "Subsubtitle",
29 CellChangeTimes->{{3.5768444140363092`*^9, 3.576844436676321*^9}, {
30  3.576908540598782*^9, 3.57690854318825*^9}, {3.57692409730613*^9,
31  3.576924098087501*^9}, {3.577001764223649*^9, 3.5770017658554983`*^9}}],
32
33Cell[BoxData[
34 RowBox[{"Quit", "[", "]"}]], "Input",
35 CellChangeTimes->{{3.5770090402447157`*^9, 3.5770090410758057`*^9}}],
36
37Cell[CellGroupData[{
38
39Cell[BoxData[{
40 RowBox[{
41  RowBox[{"$FeynRulesPath", "=",
42   RowBox[{
43   "SetDirectory", "[", "\"\</scratch/skrastanov/feynrules\>\"", "]"}]}], ";",
44  RowBox[{"<<", "FeynRules`"}], ";"}], "\[IndentingNewLine]",
45 RowBox[{
46  RowBox[{"SetDirectory", "[",
47   RowBox[{"$FeynRulesPath", "<>", "\"\</Models/topBSM\>\""}], "]"}],
48  ";"}], "\[IndentingNewLine]",
49 RowBox[{
50  RowBox[{"LoadModel", "[",
51   RowBox[{"\"\<../SM/SM.fr\>\"", ",", " ", "\"\<topBSM.fr\>\""}], "]"}],
52  ";"}], "\[IndentingNewLine]",
53 RowBox[{
54  RowBox[{"LoadRestriction", "[",
55   RowBox[{"\"\<../SM/Cabibbo.rst\>\"", ",", "\"\<../SM/Massless.rst\>\""}],
56   "]"}], ";"}], "\[IndentingNewLine]",
57 RowBox[{
58  RowBox[{"FeynmanGauge", "=", "False"}], ";"}]}], "Input",
59 CellChangeTimes->{{3.5757105960602818`*^9, 3.575710603935651*^9}, {
60   3.57578243012792*^9, 3.5757824441106367`*^9}, {3.575782494158711*^9,
61   3.5757825305743513`*^9}, {3.575957845650674*^9, 3.575957871970462*^9}, {
62   3.576316090315236*^9, 3.57631609268423*^9}, {3.576475823332283*^9,
63   3.5764758301727753`*^9}, {3.5769095727971373`*^9, 3.576909575548011*^9}, {
64   3.576999343382819*^9, 3.576999345318432*^9}, 3.5783050745361757`*^9, {
65   3.578306831719882*^9, 3.5783068386009197`*^9}, {3.5829801909785023`*^9,
66   3.582980197969267*^9}}],
67
68Cell[CellGroupData[{
69
70Cell[BoxData["\<\" - FeynRules - \"\>"], "Print",
71 CellChangeTimes->{
72  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
73   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
74   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
75   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
76   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
77   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
78   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
79   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
80   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
81   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
82   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
83   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
84   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
85   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
86   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
87   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
88   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
89   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
90   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
91   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
92   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
93   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
94   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
95   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
96   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
97   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
98   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
99   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
100   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
101   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
102   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
103   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
104   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
105   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
106   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
107   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
108   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
109   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
110   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
111   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
112   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
113   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
114   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
115   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
116   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
117   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
118   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
119   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
120   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
121   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
122   3.583244989300933*^9, 3.583246415412347*^9, 3.583319474431493*^9}],
123
124Cell[BoxData[
125 InterpretationBox[
126  RowBox[{"\<\"Version: \"\>", "\[InvisibleSpace]", "\<\"1.7.178\"\>",
127   "\[InvisibleSpace]",
128   RowBox[{"\<\" (\"\>", " ", "\<\"28 May 2013\"\>"}],
129   "\[InvisibleSpace]", "\<\").\"\>"}],
130  SequenceForm["Version: ", "1.7.178", " (" "28 May 2013", ")."],
131  Editable->False]], "Print",
132 CellChangeTimes->{
133  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
134   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
135   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
136   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
137   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
138   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
139   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
140   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
141   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
142   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
143   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
144   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
145   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
146   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
147   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
148   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
149   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
150   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
151   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
152   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
153   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
154   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
155   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
156   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
157   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
158   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
159   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
160   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
161   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
162   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
163   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
164   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
165   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
166   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
167   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
168   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
169   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
170   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
171   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
172   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
173   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
174   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
175   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
176   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
177   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
178   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
179   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
180   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
181   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
182   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
183   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194744328547`*^9}],
184
185Cell[BoxData["\<\"Authors: A. Alloul, N. Christensen, C. Degrande, C. Duhr, \
186B. Fuks\"\>"], "Print",
187 CellChangeTimes->{
188  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
189   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
190   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
191   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
192   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
193   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
194   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
195   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
196   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
197   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
198   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
199   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
200   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
201   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
202   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
203   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
204   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
205   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
206   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
207   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
208   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
209   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
210   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
211   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
212   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
213   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
214   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
215   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
216   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
217   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
218   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
219   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
220   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
221   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
222   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
223   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
224   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
225   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
226   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
227   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
228   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
229   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
230   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
231   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
232   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
233   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
234   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
235   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
236   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
237   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
238   3.583244989300933*^9, 3.583246415412347*^9, 3.583319474434108*^9}],
239
240Cell[BoxData["\<\" \"\>"], "Print",
241 CellChangeTimes->{
242  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
243   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
244   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
245   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
246   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
247   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
248   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
249   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
250   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
251   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
252   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
253   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
254   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
255   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
256   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
257   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
258   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
259   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
260   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
261   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
262   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
263   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
264   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
265   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
266   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
267   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
268   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
269   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
270   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
271   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
272   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
273   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
274   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
275   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
276   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
277   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
278   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
279   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
280   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
281   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
282   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
283   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
284   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
285   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
286   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
287   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
288   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
289   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
290   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
291   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
292   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194744352703`*^9}],
293
294Cell[BoxData["\<\"Please cite: Comput.Phys.Commun.180:1614-1641,2009 \
295(arXiv:0806.4194).\"\>"], "Print",
296 CellChangeTimes->{
297  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
298   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
299   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
300   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
301   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
302   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
303   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
304   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
305   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
306   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
307   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
308   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
309   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
310   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
311   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
312   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
313   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
314   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
315   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
316   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
317   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
318   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
319   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
320   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
321   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
322   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
323   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
324   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
325   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
326   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
327   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
328   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
329   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
330   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
331   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
332   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
333   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
334   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
335   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
336   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
337   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
338   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
339   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
340   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
341   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
342   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
343   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
344   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
345   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
346   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
347   3.583244989300933*^9, 3.583246415412347*^9, 3.583319474436522*^9}],
348
349Cell[BoxData["\<\"http://feynrules.phys.ucl.ac.be\"\>"], "Print",
350 CellChangeTimes->{
351  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
352   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
353   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
354   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
355   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
356   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
357   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
358   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
359   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
360   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
361   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
362   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
363   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
364   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
365   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
366   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
367   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
368   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
369   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
370   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
371   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
372   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
373   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
374   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
375   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
376   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
377   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
378   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
379   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
380   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
381   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
382   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
383   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
384   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
385   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
386   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
387   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
388   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
389   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
390   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
391   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
392   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
393   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
394   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
395   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
396   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
397   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
398   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
399   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
400   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
401   3.583244989300933*^9, 3.583246415412347*^9, 3.583319474437749*^9}],
402
403Cell[BoxData["\<\" \"\>"], "Print",
404 CellChangeTimes->{
405  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
406   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
407   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
408   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
409   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
410   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
411   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
412   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
413   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
414   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
415   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
416   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
417   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
418   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
419   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
420   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
421   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
422   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
423   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
424   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
425   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
426   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
427   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
428   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
429   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
430   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
431   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
432   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
433   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
434   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
435   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
436   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
437   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
438   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
439   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
440   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
441   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
442   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
443   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
444   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
445   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
446   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
447   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
448   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
449   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
450   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
451   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
452   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
453   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
454   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
455   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194744389257`*^9}],
456
457Cell[BoxData["\<\"The FeynRules palette can be opened using the command \
458FRPalette[].\"\>"], "Print",
459 CellChangeTimes->{
460  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
461   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
462   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
463   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
464   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
465   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
466   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
467   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
468   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
469   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
470   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
471   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
472   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
473   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
474   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
475   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
476   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
477   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
478   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
479   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
480   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
481   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
482   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
483   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
484   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
485   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
486   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
487   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
488   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
489   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
490   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
491   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
492   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
493   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
494   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
495   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
496   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
497   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
498   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
499   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
500   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
501   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
502   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
503   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
504   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
505   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
506   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
507   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
508   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
509   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
510   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194744402113`*^9}],
511
512Cell[BoxData["\<\"Merging model-files...\"\>"], "Print",
513 CellChangeTimes->{
514  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
515   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
516   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
517   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
518   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
519   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
520   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
521   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
522   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
523   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
524   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
525   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
526   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
527   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
528   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
529   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
530   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
531   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
532   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
533   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
534   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
535   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
536   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
537   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
538   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
539   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
540   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
541   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
542   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
543   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
544   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
545   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
546   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
547   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
548   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
549   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
550   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
551   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
552   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
553   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
554   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
555   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
556   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
557   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
558   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
559   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
560   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
561   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
562   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
563   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
564   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194803093348`*^9}],
565
566Cell[BoxData["\<\"This model implementation was created by\"\>"], "Print",
567 CellChangeTimes->{
568  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
569   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
570   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
571   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
572   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
573   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
574   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
575   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
576   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
577   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
578   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
579   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
580   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
581   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
582   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
583   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
584   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
585   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
586   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
587   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
588   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
589   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
590   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
591   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
592   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
593   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
594   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
595   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
596   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
597   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
598   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
599   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
600   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
601   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
602   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
603   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
604   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
605   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
606   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
607   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
608   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
609   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
610   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
611   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
612   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
613   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
614   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
615   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
616   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
617   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
618   3.583244989300933*^9, 3.583246415412347*^9, 3.583319480363839*^9}],
619
620Cell[BoxData["\<\"McAuthor\"\>"], "Print",
621 CellChangeTimes->{
622  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
623   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
624   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
625   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
626   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
627   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
628   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
629   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
630   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
631   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
632   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
633   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
634   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
635   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
636   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
637   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
638   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
639   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
640   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
641   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
642   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
643   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
644   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
645   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
646   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
647   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
648   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
649   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
650   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
651   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
652   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
653   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
654   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
655   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
656   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
657   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
658   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
659   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
660   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
661   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
662   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
663   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
664   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
665   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
666   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
667   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
668   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
669   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
670   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
671   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
672   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194803652163`*^9}],
673
674Cell[BoxData["\<\"Poly Postdoc\"\>"], "Print",
675 CellChangeTimes->{
676  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
677   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
678   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
679   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
680   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
681   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
682   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
683   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
684   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
685   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
686   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
687   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
688   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
689   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
690   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
691   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
692   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
693   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
694   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
695   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
696   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
697   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
698   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
699   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
700   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
701   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
702   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
703   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
704   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
705   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
706   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
707   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
708   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
709   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
710   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
711   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
712   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
713   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
714   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
715   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
716   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
717   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
718   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
719   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
720   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
721   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
722   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
723   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
724   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
725   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
726   3.583244989300933*^9, 3.583246415412347*^9, 3.583319480366529*^9}],
727
728Cell[BoxData["\<\"Dr Docky\"\>"], "Print",
729 CellChangeTimes->{
730  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
731   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
732   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
733   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
734   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
735   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
736   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
737   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
738   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
739   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
740   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
741   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
742   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
743   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
744   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
745   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
746   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
747   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
748   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
749   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
750   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
751   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
752   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
753   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
754   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
755   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
756   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
757   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
758   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
759   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
760   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
761   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
762   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
763   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
764   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
765   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
766   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
767   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
768   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
769   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
770   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
771   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
772   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
773   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
774   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
775   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
776   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
777   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
778   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
779   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
780   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194803678427`*^9}],
781
782Cell[BoxData[
783 InterpretationBox[
784  RowBox[{"\<\"Model Version: \"\>", "\[InvisibleSpace]", "\<\"0\"\>"}],
785  SequenceForm["Model Version: ", "0"],
786  Editable->False]], "Print",
787 CellChangeTimes->{
788  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
789   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
790   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
791   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
792   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
793   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
794   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
795   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
796   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
797   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
798   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
799   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
800   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
801   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
802   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
803   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
804   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
805   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
806   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
807   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
808   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
809   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
810   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
811   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
812   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
813   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
814   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
815   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
816   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
817   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
818   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
819   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
820   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
821   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
822   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
823   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
824   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
825   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
826   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
827   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
828   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
829   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
830   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
831   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
832   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
833   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
834   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
835   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
836   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
837   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
838   3.583244989300933*^9, 3.583246415412347*^9, 3.583319480369274*^9}],
839
840Cell[BoxData["\<\"example.com\"\>"], "Print",
841 CellChangeTimes->{
842  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
843   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
844   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
845   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
846   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
847   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
848   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
849   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
850   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
851   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
852   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
853   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
854   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
855   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
856   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
857   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
858   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
859   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
860   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
861   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
862   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
863   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
864   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
865   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
866   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
867   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
868   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
869   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
870   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
871   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
872   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
873   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
874   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
875   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
876   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
877   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
878   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
879   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
880   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
881   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
882   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
883   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
884   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
885   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
886   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
887   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
888   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
889   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
890   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
891   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
892   3.583244989300933*^9, 3.583246415412347*^9, 3.583319480370592*^9}],
893
894Cell[BoxData["\<\"For more information, type ModelInformation[].\"\>"], \
895"Print",
896 CellChangeTimes->{
897  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
898   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
899   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
900   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
901   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
902   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
903   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
904   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
905   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
906   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
907   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
908   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
909   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
910   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
911   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
912   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
913   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
914   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
915   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
916   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
917   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
918   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
919   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
920   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
921   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
922   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
923   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
924   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
925   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
926   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
927   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
928   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
929   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
930   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
931   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
932   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
933   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
934   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
935   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
936   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
937   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
938   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
939   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
940   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
941   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
942   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
943   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
944   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
945   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
946   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
947   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194803794527`*^9}],
948
949Cell[BoxData["\<\"\"\>"], "Print",
950 CellChangeTimes->{
951  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
952   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
953   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
954   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
955   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
956   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
957   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
958   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
959   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
960   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
961   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
962   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
963   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
964   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
965   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
966   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
967   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
968   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
969   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
970   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
971   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
972   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
973   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
974   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
975   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
976   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
977   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
978   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
979   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
980   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
981   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
982   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
983   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
984   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
985   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
986   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
987   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
988   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
989   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
990   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
991   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
992   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
993   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
994   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
995   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
996   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
997   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
998   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
999   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1000   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1001   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194803807898`*^9}],
1002
1003Cell[BoxData["\<\"   - Loading particle classes.\"\>"], "Print",
1004 CellChangeTimes->{
1005  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
1006   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
1007   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
1008   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
1009   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
1010   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
1011   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
1012   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
1013   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
1014   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
1015   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
1016   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
1017   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
1018   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
1019   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
1020   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
1021   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
1022   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
1023   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
1024   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
1025   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
1026   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
1027   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
1028   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
1029   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
1030   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
1031   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
1032   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
1033   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
1034   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
1035   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
1036   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
1037   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
1038   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
1039   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
1040   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
1041   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
1042   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
1043   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
1044   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
1045   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
1046   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
1047   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
1048   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
1049   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
1050   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
1051   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
1052   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
1053   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1054   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1055   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194803821707`*^9}],
1056
1057Cell[BoxData["\<\"   - Loading gauge group classes.\"\>"], "Print",
1058 CellChangeTimes->{
1059  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
1060   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
1061   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
1062   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
1063   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
1064   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
1065   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
1066   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
1067   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
1068   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
1069   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
1070   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
1071   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
1072   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
1073   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
1074   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
1075   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
1076   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
1077   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
1078   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
1079   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
1080   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
1081   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
1082   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
1083   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
1084   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
1085   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
1086   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
1087   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
1088   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
1089   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
1090   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
1091   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
1092   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
1093   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
1094   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
1095   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
1096   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
1097   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
1098   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
1099   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
1100   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
1101   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
1102   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
1103   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
1104   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
1105   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
1106   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
1107   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1108   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1109   3.583244989300933*^9, 3.583246415412347*^9, 3.583319480567374*^9}],
1110
1111Cell[BoxData["\<\"   - Loading parameter classes.\"\>"], "Print",
1112 CellChangeTimes->{
1113  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
1114   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
1115   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
1116   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
1117   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
1118   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
1119   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
1120   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
1121   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
1122   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
1123   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
1124   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
1125   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
1126   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
1127   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
1128   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
1129   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
1130   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
1131   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
1132   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
1133   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
1134   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
1135   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
1136   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
1137   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
1138   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
1139   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
1140   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
1141   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
1142   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
1143   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
1144   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
1145   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
1146   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
1147   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
1148   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
1149   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
1150   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
1151   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
1152   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
1153   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
1154   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
1155   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
1156   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
1157   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
1158   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
1159   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
1160   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
1161   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1162   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1163   3.583244989300933*^9, 3.583246415412347*^9, 3.583319480622727*^9}],
1164
1165Cell[BoxData[
1166 InterpretationBox[
1167  RowBox[{"\<\"\\nModel \"\>", "\[InvisibleSpace]", "\<\"topBSM\"\>",
1168   "\[InvisibleSpace]", "\<\" loaded.\"\>"}],
1169  SequenceForm["\nModel ", "topBSM", " loaded."],
1170  Editable->False]], "Print",
1171 CellChangeTimes->{
1172  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
1173   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
1174   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
1175   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
1176   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
1177   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
1178   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
1179   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
1180   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
1181   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
1182   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
1183   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
1184   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
1185   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
1186   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
1187   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
1188   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
1189   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
1190   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
1191   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
1192   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
1193   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
1194   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
1195   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
1196   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
1197   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
1198   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
1199   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
1200   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
1201   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
1202   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
1203   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
1204   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
1205   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
1206   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
1207   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
1208   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
1209   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
1210   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
1211   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
1212   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
1213   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
1214   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
1215   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
1216   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
1217   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
1218   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
1219   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
1220   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1221   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1222   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194807081423`*^9}],
1223
1224Cell[BoxData[
1225 InterpretationBox[
1226  RowBox[{"\<\"Loading restrictions from \"\>",
1227   "\[InvisibleSpace]", "\<\"../SM/Cabibbo.rst\"\>",
1228   "\[InvisibleSpace]", "\<\" : \"\>", "\[InvisibleSpace]",
1229   DynamicBox[ToBoxes[PRIVATE`FR$restrictionCounter, StandardForm],
1230    ImageSizeCache->{16., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1231   "\[InvisibleSpace]", "6"}],
1232  SequenceForm["Loading restrictions from ", "../SM/Cabibbo.rst", " : ",
1233   Dynamic[PRIVATE`FR$restrictionCounter], " / ", 6],
1234  Editable->False]], "Print",
1235 CellChangeTimes->{
1236  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
1237   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
1238   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
1239   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
1240   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
1241   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
1242   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
1243   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
1244   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
1245   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
1246   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
1247   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
1248   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
1249   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
1250   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
1251   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
1252   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
1253   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
1254   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
1255   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
1256   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
1257   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
1258   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
1259   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
1260   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
1261   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
1262   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
1263   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
1264   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
1265   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
1266   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
1267   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
1268   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
1269   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
1270   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
1271   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
1272   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
1273   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
1274   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
1275   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
1276   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
1277   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
1278   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
1279   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
1280   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
1281   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
1282   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
1283   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
1284   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1285   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1286   3.583244989300933*^9, 3.583246415412347*^9, 3.583319481141243*^9}],
1287
1288Cell[BoxData[
1289 InterpretationBox[
1290  RowBox[{"\<\"Loading restrictions from \"\>",
1291   "\[InvisibleSpace]", "\<\"../SM/Massless.rst\"\>",
1292   "\[InvisibleSpace]", "\<\" : \"\>", "\[InvisibleSpace]",
1293   DynamicBox[ToBoxes[PRIVATE`FR$restrictionCounter, StandardForm],
1294    ImageSizeCache->{16., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1295   "\[InvisibleSpace]", "18"}],
1296  SequenceForm["Loading restrictions from ", "../SM/Massless.rst", " : ",
1297   Dynamic[PRIVATE`FR$restrictionCounter], " / ", 18],
1298  Editable->False]], "Print",
1299 CellChangeTimes->{
1300  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
1301   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
1302   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
1303   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
1304   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
1305   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
1306   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
1307   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
1308   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
1309   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
1310   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
1311   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
1312   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
1313   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
1314   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
1315   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
1316   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
1317   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
1318   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
1319   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
1320   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
1321   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
1322   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
1323   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
1324   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
1325   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
1326   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
1327   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
1328   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
1329   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
1330   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
1331   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
1332   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
1333   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
1334   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
1335   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
1336   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
1337   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
1338   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
1339   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
1340   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
1341   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
1342   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
1343   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
1344   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
1345   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
1346   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
1347   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
1348   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1349   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1350   3.583244989300933*^9, 3.583246415412347*^9, 3.5833194813081284`*^9}],
1351
1352Cell[BoxData["\<\"Restrictions loaded.\"\>"], "Print",
1353 CellChangeTimes->{
1354  3.576921060608716*^9, 3.5769241118142033`*^9, {3.576924254519211*^9,
1355   3.576924279377029*^9}, 3.576924314539659*^9, 3.5769243884840393`*^9,
1356   3.576924606494104*^9, 3.576924876466647*^9, 3.576926229440332*^9,
1357   3.576929368557392*^9, 3.576929784578537*^9, 3.57699575274131*^9, {
1358   3.576999334754154*^9, 3.5769993535665483`*^9}, 3.577000406341497*^9,
1359   3.57700048049507*^9, 3.5770005284538918`*^9, 3.5770006843360977`*^9,
1360   3.577001197294558*^9, 3.577001334535886*^9, 3.577004596270455*^9,
1361   3.577005378978451*^9, 3.57700904532548*^9, 3.577009269826077*^9,
1362   3.577011462107565*^9, 3.577165496570634*^9, {3.57717297562813*^9,
1363   3.57717300132343*^9}, 3.577173218688097*^9, 3.5771732793314667`*^9,
1364   3.577174274780031*^9, 3.577174387448155*^9, 3.577175040360053*^9,
1365   3.577184061677867*^9, 3.577188798357963*^9, 3.577189600774597*^9,
1366   3.577427258185413*^9, {3.5774278591370277`*^9, 3.577427877555851*^9},
1367   3.5774285276709642`*^9, 3.57743465395566*^9, 3.577437673011628*^9,
1368   3.5774377044836197`*^9, 3.5777754356467123`*^9, 3.578134599259243*^9,
1369   3.578134883078326*^9, {3.578134925820919*^9, 3.578134955687478*^9},
1370   3.5781350233767767`*^9, 3.578135122969839*^9, 3.578135213797826*^9,
1371   3.578135254279922*^9, 3.5781353027568398`*^9, 3.57813596233011*^9,
1372   3.5781360311263103`*^9, 3.578136393848377*^9, 3.578136442467016*^9,
1373   3.578136645499117*^9, 3.5781403429409227`*^9, 3.578140397612409*^9,
1374   3.5781406524700317`*^9, 3.578140742041177*^9, 3.578140988094077*^9,
1375   3.578144325576377*^9, 3.578144792528865*^9, 3.578144823503563*^9,
1376   3.57820330834361*^9, 3.578205681827704*^9, 3.5782059812246037`*^9,
1377   3.578304122540851*^9, 3.578304176611801*^9, 3.578304222135399*^9,
1378   3.578304265020756*^9, 3.5783043253315163`*^9, 3.5783046915652933`*^9,
1379   3.578304733178646*^9, 3.578305080344287*^9, 3.578306771083302*^9,
1380   3.5783068156387157`*^9, 3.5783068811353073`*^9, 3.5783069279790487`*^9, {
1381   3.578306958014578*^9, 3.578306980694296*^9}, 3.578307016248886*^9,
1382   3.578307188816362*^9, 3.5783072713137693`*^9, 3.5783073249687243`*^9,
1383   3.578307377600041*^9, 3.578310971463491*^9, 3.578311168813881*^9,
1384   3.578311313356852*^9, 3.578375605372764*^9, 3.5783811304463873`*^9,
1385   3.578381414106896*^9, 3.578383669401577*^9, 3.578657557209033*^9,
1386   3.578657646967415*^9, 3.5786581682417803`*^9, 3.578658206813073*^9, {
1387   3.578658243011338*^9, 3.578658305589816*^9}, 3.578658375626298*^9,
1388   3.5786588233470087`*^9, 3.578658957338928*^9, 3.57865908411287*^9,
1389   3.57865917465403*^9, 3.578659225552744*^9, 3.5786600158231497`*^9,
1390   3.578737906971922*^9, 3.5787384533556137`*^9, 3.578739100059568*^9,
1391   3.578904112813568*^9, 3.578904198977916*^9, 3.578907137926094*^9,
1392   3.578908627842637*^9, 3.578916834867568*^9, 3.578918274021546*^9,
1393   3.5789183608640327`*^9, 3.579000970496759*^9, 3.579174317845963*^9,
1394   3.579174405320025*^9, {3.579174893702989*^9, 3.579174914449615*^9},
1395   3.5791749461891623`*^9, 3.579248304787442*^9, 3.579248674048401*^9,
1396   3.5792488621795263`*^9, 3.5795061917582808`*^9, 3.579506276382373*^9,
1397   3.579598380977426*^9, 3.5795984155437193`*^9, 3.579598497558055*^9,
1398   3.579598528623856*^9, 3.579600009428553*^9, 3.579600051188591*^9,
1399   3.579608595576488*^9, 3.579609531589098*^9, 3.581072045931547*^9,
1400   3.581076696956615*^9, 3.58115324185452*^9, 3.581155123534793*^9,
1401   3.582980207251278*^9, 3.583042258498118*^9, 3.583223133407558*^9,
1402   3.583231446022376*^9, {3.583231692439569*^9, 3.58323171204828*^9},
1403   3.5832318798434343`*^9, 3.5832344882293863`*^9, 3.583244934205217*^9,
1404   3.583244989300933*^9, 3.583246415412347*^9, 3.583319481458433*^9}]
1405}, Open  ]]
1406}, Closed]],
1407
1408Cell["\<\
1409When printing out results here we do not want all internal parameters to be \
1410expanded, so we define a few dummies to be used for the interactive work. Do \
1411_not_ use them for generating models.\
1412\>", "Text",
1413 CellChangeTimes->{{3.5781371199980173`*^9, 3.578137180368835*^9}}],
1414
1415Cell[BoxData[
1416 RowBox[{"dummies", ":=",
1417  RowBox[{"{",
1418   RowBox[{
1419    RowBox[{"s0fusionScalar", "\[Rule]", "s0fs"}], ",",
1420    RowBox[{"s0fusionAxial", "\[Rule]", "s0fa"}], ",",
1421    RowBox[{"o0fusionScalar", "\[Rule]", "o0fs"}], ",",
1422    RowBox[{"o0fusionAxial", "\[Rule]", "o0fa"}]}], "}"}]}]], "Input",
1423 CellChangeTimes->{{3.578137186436026*^9, 3.578137247492285*^9}, {
1424  3.578307444133318*^9, 3.578307456133444*^9}}],
1425
1426Cell[TextData[StyleBox["It does not support FeynmanGauge", "Text"]], "Text",
1427 CellChangeTimes->{{3.576909821280615*^9, 3.576909859988627*^9}}],
1428
1429Cell[BoxData[
1430 RowBox[{
1431  RowBox[{"FeynmanGauge", "=", "False"}], ";"}]], "Input",
1432 CellChangeTimes->{{3.5769098465599403`*^9, 3.5769098545038424`*^9}}]
1433}, Closed]],
1434
1435Cell[CellGroupData[{
1436
1437Cell["\<\
1438Technical problems with the model!\
1439\>", "Subsubtitle",
1440 CellChangeTimes->{{3.578134425767261*^9, 3.578134438465879*^9}, {
1441  3.578134534095989*^9, 3.5781345353288116`*^9}}],
1442
1443Cell["\<\
1444When the model UFO files are generated, whether the scalar is light or heavy \
1445compared to the top is _hardcoded_. Do _not_ change the mass of the scalar \
1446from within MadGraph if it passes below/above twice the top mass. Change it \
1447in FeynRules and regenerate the model files.
1448
1449The model will probably behave badly when the scalar mass is very near two \
1450times the top mass.\
1451\>", "Text",
1452 CellChangeTimes->{{3.578134446082402*^9, 3.578134528160145*^9}, {
1453  3.578136902992489*^9, 3.5781369387685966`*^9}, {3.578144666738386*^9,
1454  3.578144694050115*^9}, {3.58332182604189*^9, 3.583321846968223*^9}}]
1455}, Closed]],
1456
1457Cell[CellGroupData[{
1458
1459Cell["\<\
1460Effective  couplings used for gluon fusion into heavy/light (pseudo)scalars\
1461\>", "Subsubtitle",
1462 CellChangeTimes->{{3.578137701980884*^9, 3.5781377428650103`*^9}}],
1463
1464Cell[CellGroupData[{
1465
1466Cell[BoxData[
1467 RowBox[{"sertHeavy", "[", "t", "]"}]], "Input",
1468 CellChangeTimes->{{3.5781376619467287`*^9, 3.578137668755929*^9}}],
1469
1470Cell[BoxData[
1471 FormBox[
1472  RowBox[{
1473   FractionBox["3", "2"], " ", "t", " ",
1474   RowBox[{"(",
1475    RowBox[{"1", "+",
1476     RowBox[{
1477      FractionBox["1", "4"], " ",
1478      RowBox[{"(",
1479       RowBox[{"t", "-", "1"}], ")"}], " ",
1480      SuperscriptBox[
1481       RowBox[{"(",
1482        RowBox[{
1483         RowBox[{"log", "(",
1484          FractionBox[
1485           RowBox[{
1486            SqrtBox[
1487             RowBox[{"1", "-", "t"}]], "+", "1"}],
1488           RowBox[{"1", "-",
1489            SqrtBox[
1490             RowBox[{"1", "-", "t"}]]}]], ")"}], "-",
1491         RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}]}], ")"}], "2"]}]}], ")"}]}],
1492  TraditionalForm]], "Output",
1493 CellChangeTimes->{{3.578137664464551*^9, 3.578137669441545*^9}}]
1494}, Open  ]],
1495
1496Cell[CellGroupData[{
1497
1498Cell[BoxData[
1499 RowBox[{"sertLight", "[", "t", "]"}]], "Input",
1500 CellChangeTimes->{{3.578137672206565*^9, 3.578137676548595*^9}}],
1501
1502Cell[BoxData[
1503 FormBox[
1504  RowBox[{
1505   FractionBox["3", "2"], " ", "t", " ",
1506   RowBox[{"(",
1507    RowBox[{
1508     RowBox[{
1509      RowBox[{"(",
1510       RowBox[{"1", "-", "t"}], ")"}], " ",
1511      SuperscriptBox[
1512       RowBox[{
1513        SuperscriptBox["sin",
1514         RowBox[{"-", "1"}]], "(",
1515        FractionBox["1",
1516         SqrtBox["t"]], ")"}], "2"]}], "+", "1"}], ")"}]}],
1517  TraditionalForm]], "Output",
1518 CellChangeTimes->{3.578137677056595*^9}]
1519}, Open  ]],
1520
1521Cell[CellGroupData[{
1522
1523Cell[BoxData[
1524 RowBox[{"serpHeavy", "[", "t", "]"}]], "Input",
1525 CellChangeTimes->{{3.578137679554677*^9, 3.5781376858913927`*^9}}],
1526
1527Cell[BoxData[
1528 FormBox[
1529  RowBox[{
1530   RowBox[{"-",
1531    FractionBox["1", "4"]}], " ", "t", " ",
1532   SuperscriptBox[
1533    RowBox[{"(",
1534     RowBox[{
1535      RowBox[{"log", "(",
1536       FractionBox[
1537        RowBox[{
1538         SqrtBox[
1539          RowBox[{"1", "-", "t"}]], "+", "1"}],
1540        RowBox[{"1", "-",
1541         SqrtBox[
1542          RowBox[{"1", "-", "t"}]]}]], ")"}], "-",
1543      RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}]}], ")"}], "2"]}],
1544  TraditionalForm]], "Output",
1545 CellChangeTimes->{3.578137686864924*^9}]
1546}, Open  ]],
1547
1548Cell[CellGroupData[{
1549
1550Cell[BoxData[
1551 RowBox[{"serpLight", "[", "t", "]"}]], "Input",
1552 CellChangeTimes->{{3.578137687954591*^9, 3.5781376954271812`*^9}}],
1553
1554Cell[BoxData[
1555 FormBox[
1556  RowBox[{"t", " ",
1557   SuperscriptBox[
1558    RowBox[{
1559     SuperscriptBox["sin",
1560      RowBox[{"-", "1"}]], "(",
1561     FractionBox["1",
1562      SqrtBox["t"]], ")"}], "2"]}], TraditionalForm]], "Output",
1563 CellChangeTimes->{3.578137695888454*^9}]
1564}, Open  ]]
1565}, Closed]],
1566
1567Cell[CellGroupData[{
1568
1569Cell["Spin 0, color singlet", "Subtitle",
1570 CellChangeTimes->{{3.5763186596886253`*^9, 3.576318674225849*^9}, {
1571  3.576318938377852*^9, 3.576318939322701*^9}, {3.577011473122003*^9,
1572  3.577011473969521*^9}}],
1573
1574Cell[CellGroupData[{
1575
1576Cell[BoxData["S0"], "Input",
1577 CellChangeTimes->{{3.5774348670090933`*^9, 3.5774348674484453`*^9}}],
1578
1579Cell[BoxData["S0"], "Output",
1580 CellChangeTimes->{3.577434868149713*^9}]
1581}, Open  ]],
1582
1583Cell["\<\
1584Introducing a spin-0 singlet coupled only to the physical top.
1585
1586The gluon fussion top loop is implemented as an effective operator in the \
1587lagrangian.
1588
1589Two parameters are introduced: s0scalar and s0axial. Dependent on them are \
1590the s0fusionScalar and s0fusionAxial which contain the integrated top loop.\
1591\>", "Text",
1592 CellChangeTimes->{{3.5768445062707157`*^9, 3.576844620532359*^9}, {
1593  3.5768446505800323`*^9, 3.576844668820506*^9}, {3.5768447014925127`*^9,
1594  3.57684471206841*^9}, {3.576845258132791*^9, 3.5768453245649548`*^9}, {
1595  3.576995784447092*^9, 3.576995811086684*^9}, {3.577775487674387*^9,
1596  3.577775488153625*^9}, {3.577775536970112*^9, 3.577775546425754*^9}, {
1597  3.578137851728983*^9, 3.578137853488522*^9}}],
1598
1599Cell[CellGroupData[{
1600
1601Cell["Coupling to top", "Subsubtitle",
1602 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}}],
1603
1604Cell[CellGroupData[{
1605
1606Cell[BoxData["LS0top"], "Input",
1607 CellChangeTimes->{{3.5757103517184887`*^9, 3.5757104886884623`*^9}, {
1608   3.5757108081282473`*^9, 3.5757108152953444`*^9}, {3.575710891937009*^9,
1609   3.5757109206262283`*^9}, {3.5757109803684607`*^9,
1610   3.5757109929593077`*^9}, {3.575711134048708*^9, 3.575711174928607*^9}, {
1611   3.575711313792768*^9, 3.575711347392899*^9}, 3.575714470876689*^9, {
1612   3.57571468348612*^9, 3.5757146844652147`*^9}, {3.575715511697496*^9,
1613   3.575715519681115*^9}, {3.5757196297466307`*^9, 3.5757196418446293`*^9}, {
1614   3.5757198387392883`*^9, 3.5757198945146713`*^9}, {3.575719977410556*^9,
1615   3.575720024834053*^9}, {3.5757201296829453`*^9, 3.575720136498171*^9}, {
1616   3.5757203834266644`*^9, 3.575720424434667*^9}, {3.57572045675422*^9,
1617   3.575720466450326*^9}, {3.575720527250671*^9, 3.575720543939529*^9}, {
1618   3.575720802067177*^9, 3.575720824483234*^9}, {3.5757208623550167`*^9,
1619   3.575720881491063*^9}, {3.575803447526205*^9, 3.575803457991686*^9}, {
1620   3.5758075625691957`*^9, 3.575807572745495*^9}, {3.575873104758226*^9,
1621   3.575873107256053*^9}, {3.575953869093923*^9, 3.5759539224885893`*^9}, {
1622   3.576316116684032*^9, 3.576316122688367*^9}}],
1623
1624Cell[BoxData[
1625 FormBox[
1626  RowBox[{
1627   FractionBox[
1628    RowBox[{"MT", " ", "S0", " ",
1629     RowBox[{
1630      FormBox[
1631       OverscriptBox["t", "\<\"-\"\>"],
1632       TraditionalForm], ".", "t"}], " ",
1633     FormBox[
1634      SubscriptBox["s0", "scalar"],
1635      TraditionalForm]}], "vev"], "+",
1636   FractionBox[
1637    RowBox[{"\[ImaginaryI]", " ", "MT", " ", "S0", " ",
1638     FormBox[
1639      SubscriptBox["s0", "axial"],
1640      TraditionalForm], " ",
1641     RowBox[{
1642      FormBox[
1643       OverscriptBox["t", "\<\"-\"\>"],
1644       TraditionalForm], ".",
1645      FormBox[
1646       SuperscriptBox["\[Gamma]", "5"],
1647       TraditionalForm], ".", "t"}]}], "vev"]}], TraditionalForm]], "Output",
1648 CellChangeTimes->{
1649  3.576316123748204*^9, 3.57631732865878*^9, 3.576321172927269*^9,
1650   3.5764748491246*^9, 3.576475599703177*^9, 3.57647584864898*^9,
1651   3.576838248131874*^9, {3.576838278180558*^9, 3.576838281357786*^9},
1652   3.576838924980031*^9, 3.576839063796001*^9, 3.576839110458744*^9,
1653   3.576839421508849*^9, 3.576839511716107*^9, 3.5768403132406673`*^9,
1654   3.576840466133134*^9, 3.576841906725453*^9, 3.576842234933474*^9,
1655   3.5768429424863377`*^9, 3.576909918010613*^9, 3.576921168642881*^9,
1656   3.576995762126313*^9, 3.576999363486916*^9, 3.577000538687789*^9,
1657   3.5770013439840307`*^9, 3.5770017539957733`*^9, 3.577173286850161*^9,
1658   3.577188809351915*^9, 3.578136451873348*^9, 3.57813665697759*^9,
1659   3.578137365745411*^9}]
1660}, Open  ]],
1661
1662Cell[CellGroupData[{
1663
1664Cell[BoxData[
1665 RowBox[{"FeynmanRules", "[",
1666  RowBox[{"LS0top", ",", " ",
1667   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]], "Input",
1668 CellChangeTimes->{{3.57571861669071*^9, 3.5757186206385183`*^9}, {
1669   3.575720560719078*^9, 3.575720567406155*^9}, {3.5759568797261744`*^9,
1670   3.575956943567664*^9}, {3.5759569991178017`*^9, 3.575957065070512*^9}, {
1671   3.575957166464693*^9, 3.575957215680324*^9}, {3.5759574338622293`*^9,
1672   3.5759574385486727`*^9}, {3.575957905631774*^9, 3.575957935951001*^9}, {
1673   3.5763161360905848`*^9, 3.576316153809236*^9}, 3.576318957736636*^9, {
1674   3.576844727768158*^9, 3.576844736967598*^9}, {3.576845219031888*^9,
1675   3.5768452289203444`*^9}}],
1676
1677Cell[CellGroupData[{
1678
1679Cell[BoxData[
1680 FormBox[
1681  StyleBox["\<\"Starting Feynman rule calculation.\"\>",
1682   StripOnInput->False,
1683   LineColor->RGBColor[1, 0.5, 0],
1684   FrontFaceColor->RGBColor[1, 0.5, 0],
1685   BackFaceColor->RGBColor[1, 0.5, 0],
1686   GraphicsColor->RGBColor[1, 0.5, 0],
1687   FontWeight->Bold,
1688   FontColor->RGBColor[1, 0.5, 0]], TraditionalForm]], "Print",
1689 CellChangeTimes->{
1690  3.575957491003508*^9, 3.575957684265312*^9, {3.575957888156546*^9,
1691   3.575957937876129*^9}, 3.575958091981783*^9, 3.575958214088179*^9,
1692   3.575958889114544*^9, 3.57595899496387*^9, 3.575959124707939*^9,
1693   3.575959700832821*^9, 3.575967136268403*^9, 3.576215822659492*^9,
1694   3.576316154977828*^9, 3.576317382054942*^9, 3.5763212041768436`*^9,
1695   3.5768382531501303`*^9, {3.576845223776215*^9, 3.5768452294619417`*^9},
1696   3.576909920481695*^9, 3.5769211703408413`*^9, 3.576999370281933*^9,
1697   3.577000540213258*^9, 3.577001345693692*^9, 3.577173297269738*^9,
1698   3.577188811749868*^9, 3.578136455495762*^9, 3.578137367531797*^9}],
1699
1700Cell[BoxData[
1701 FormBox["\<\"Expanding the Lagrangian...\"\>", TraditionalForm]], "Print",
1702 CellChangeTimes->{
1703  3.575957491003508*^9, 3.575957684265312*^9, {3.575957888156546*^9,
1704   3.575957937876129*^9}, 3.575958091981783*^9, 3.575958214088179*^9,
1705   3.575958889114544*^9, 3.57595899496387*^9, 3.575959124707939*^9,
1706   3.575959700832821*^9, 3.575967136268403*^9, 3.576215822659492*^9,
1707   3.576316154977828*^9, 3.576317382054942*^9, 3.5763212041768436`*^9,
1708   3.5768382531501303`*^9, {3.576845223776215*^9, 3.5768452294619417`*^9},
1709   3.576909920481695*^9, 3.5769211703408413`*^9, 3.576999370281933*^9,
1710   3.577000540213258*^9, 3.577001345693692*^9, 3.577173297269738*^9,
1711   3.577188811749868*^9, 3.578136455495762*^9, 3.578137367569886*^9}],
1712
1713Cell[BoxData[
1714 FormBox["\<\"Collecting the different structures that enter the vertex.\"\>",
1715   TraditionalForm]], "Print",
1716 CellChangeTimes->{
1717  3.575957491003508*^9, 3.575957684265312*^9, {3.575957888156546*^9,
1718   3.575957937876129*^9}, 3.575958091981783*^9, 3.575958214088179*^9,
1719   3.575958889114544*^9, 3.57595899496387*^9, 3.575959124707939*^9,
1720   3.575959700832821*^9, 3.575967136268403*^9, 3.576215822659492*^9,
1721   3.576316154977828*^9, 3.576317382054942*^9, 3.5763212041768436`*^9,
1722   3.5768382531501303`*^9, {3.576845223776215*^9, 3.5768452294619417`*^9},
1723   3.576909920481695*^9, 3.5769211703408413`*^9, 3.576999370281933*^9,
1724   3.577000540213258*^9, 3.577001345693692*^9, 3.577173297269738*^9,
1725   3.577188811749868*^9, 3.578136455495762*^9, 3.578137367572854*^9}],
1726
1727Cell[BoxData[
1728 FormBox[
1729  InterpretationBox[
1730   RowBox[{
1731   "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
1732-> starting the computation: \"\>", "\[InvisibleSpace]",
1733    DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, TraditionalForm],
1734     ImageSizeCache->{6., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1735    "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
1736   SequenceForm[
1737   1, " possible non-zero vertices have been found -> starting the \
1738computation: ",
1739    Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
1740   Editable->False], TraditionalForm]], "Print",
1741 CellChangeTimes->{
1742  3.575957491003508*^9, 3.575957684265312*^9, {3.575957888156546*^9,
1743   3.575957937876129*^9}, 3.575958091981783*^9, 3.575958214088179*^9,
1744   3.575958889114544*^9, 3.57595899496387*^9, 3.575959124707939*^9,
1745   3.575959700832821*^9, 3.575967136268403*^9, 3.576215822659492*^9,
1746   3.576316154977828*^9, 3.576317382054942*^9, 3.5763212041768436`*^9,
1747   3.5768382531501303`*^9, {3.576845223776215*^9, 3.5768452294619417`*^9},
1748   3.576909920481695*^9, 3.5769211703408413`*^9, 3.576999370281933*^9,
1749   3.577000540213258*^9, 3.577001345693692*^9, 3.577173297269738*^9,
1750   3.577188811749868*^9, 3.578136455495762*^9, 3.578137367575391*^9}],
1751
1752Cell[BoxData[
1753 FormBox["\<\"1 vertex obtained.\"\>", TraditionalForm]], "Print",
1754 CellChangeTimes->{
1755  3.575957491003508*^9, 3.575957684265312*^9, {3.575957888156546*^9,
1756   3.575957937876129*^9}, 3.575958091981783*^9, 3.575958214088179*^9,
1757   3.575958889114544*^9, 3.57595899496387*^9, 3.575959124707939*^9,
1758   3.575959700832821*^9, 3.575967136268403*^9, 3.576215822659492*^9,
1759   3.576316154977828*^9, 3.576317382054942*^9, 3.5763212041768436`*^9,
1760   3.5768382531501303`*^9, {3.576845223776215*^9, 3.5768452294619417`*^9},
1761   3.576909920481695*^9, 3.5769211703408413`*^9, 3.576999370281933*^9,
1762   3.577000540213258*^9, 3.577001345693692*^9, 3.577173297269738*^9,
1763   3.577188811749868*^9, 3.578136455495762*^9, 3.5781373675771523`*^9}]
1764}, Closed]],
1765
1766Cell[BoxData[
1767 FormBox[
1768  RowBox[{"(", "\[NoBreak]", GridBox[{
1769     {
1770      RowBox[{"(", "\[NoBreak]", GridBox[{
1771         {
1772          FormBox[
1773           OverscriptBox["t", "\<\"-\"\>"],
1774           TraditionalForm], "1"},
1775         {"t", "2"},
1776         {"S0", "3"}
1777        },
1778        GridBoxAlignment->{
1779         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
1780          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
1781        GridBoxSpacings->{"Columns" -> {
1782            Offset[0.27999999999999997`], {
1783             Offset[0.7]},
1784            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
1785          "Rows" -> {
1786            Offset[0.2], {
1787             Offset[0.4]},
1788            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
1789      RowBox[{
1790       FractionBox[
1791        RowBox[{"\[ImaginaryI]", " ", "MT", " ",
1792         FormBox[
1793          SubscriptBox["s0", "scalar"],
1794          TraditionalForm], " ",
1795         FormBox[
1796          SubscriptBox["\[Delta]",
1797           RowBox[{
1798            FormBox[
1799             SubscriptBox["\<\"m\"\>", "1"],
1800             TraditionalForm], ",",
1801            FormBox[
1802             SubscriptBox["\<\"m\"\>", "2"],
1803             TraditionalForm]}]],
1804          TraditionalForm], " ",
1805         FormBox[
1806          SubscriptBox["\[Delta]",
1807           RowBox[{
1808            FormBox[
1809             SubscriptBox["\<\"s\"\>", "1"],
1810             TraditionalForm], ",",
1811            FormBox[
1812             SubscriptBox["\<\"s\"\>", "2"],
1813             TraditionalForm]}]],
1814          TraditionalForm]}], "vev"], "-",
1815       FractionBox[
1816        RowBox[{"MT", " ",
1817         FormBox[
1818          SubscriptBox["s0", "axial"],
1819          TraditionalForm], " ",
1820         FormBox[
1821          SubsuperscriptBox["\[Gamma]",
1822           RowBox[{
1823            FormBox[
1824             SubscriptBox["\<\"s\"\>", "1"],
1825             TraditionalForm], ",",
1826            FormBox[
1827             SubscriptBox["\<\"s\"\>", "2"],
1828             TraditionalForm]}], "5"],
1829          TraditionalForm], " ",
1830         FormBox[
1831          SubscriptBox["\[Delta]",
1832           RowBox[{
1833            FormBox[
1834             SubscriptBox["\<\"m\"\>", "1"],
1835             TraditionalForm], ",",
1836            FormBox[
1837             SubscriptBox["\<\"m\"\>", "2"],
1838             TraditionalForm]}]],
1839          TraditionalForm]}], "vev"]}]}
1840    },
1841    GridBoxAlignment->{
1842     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
1843      "RowsIndexed" -> {}},
1844    GridBoxSpacings->{"Columns" -> {
1845        Offset[0.27999999999999997`], {
1846         Offset[0.7]},
1847        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
1848        Offset[0.2], {
1849         Offset[0.4]},
1850        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
1851  TraditionalForm]], "Output",
1852 CellChangeTimes->{3.57684522953555*^9, 3.576909920518743*^9,
1853  3.576921170394147*^9, 3.576999370321013*^9, 3.577000540244905*^9,
1854  3.5770013457261*^9, 3.577001738217383*^9, 3.577173297317974*^9,
1855  3.577188811869732*^9, 3.578136455561207*^9, 3.5781373675808992`*^9}]
1856}, Open  ]]
1857}, Open  ]],
1858
1859Cell[CellGroupData[{
1860
1861Cell["Coupling to gluons (through a top loop)", "Subsubtitle",
1862 CellChangeTimes->{{3.576318687232041*^9, 3.576318725240529*^9}, {
1863  3.5768465205171947`*^9, 3.5768465221169167`*^9}}],
1864
1865Cell["With the following effective parameters", "Text",
1866 CellChangeTimes->{{3.576909145215076*^9, 3.57690917954064*^9}}],
1867
1868Cell[CellGroupData[{
1869
1870Cell[BoxData[
1871 RowBox[{"Definitions", "/.",
1872  RowBox[{"(",
1873   RowBox[{"s0fusionScalar", " ", "/.", " ",
1874    RowBox[{"(",
1875     RowBox[{"M$Parameters", "/.",
1876      RowBox[{
1877       RowBox[{"Equal", "[",
1878        RowBox[{"x_", ",", "y_"}], "]"}], "\[Rule]",
1879       RowBox[{"(",
1880        RowBox[{"x", "->", "y"}], ")"}]}]}], ")"}]}], ")"}]}]], "Input",
1881 CellChangeTimes->{{3.5769086659741497`*^9, 3.5769087491115427`*^9},
1882   3.576909112535284*^9, {3.577165324399412*^9, 3.577165351429234*^9}}],
1883
1884Cell[BoxData[
1885 FormBox[
1886  RowBox[{"{",
1887   RowBox[{
1888    SubscriptBox["s0", "fusionScalar"], "\[RuleDelayed]",
1889    RowBox[{"If", "[",
1890     RowBox[{
1891      RowBox[{
1892       RowBox[{"NumericalValue", "(", "MS0", ")"}], ">",
1893       RowBox[{"2", " ",
1894        RowBox[{"NumericalValue", "(", "MT", ")"}]}]}], ",",
1895      FractionBox[
1896       RowBox[{
1897        SubsuperscriptBox["g", "s", "2"], " ",
1898        SubscriptBox["s0", "scalar"], " ",
1899        RowBox[{"sertHeavy", "(",
1900         SuperscriptBox[
1901          RowBox[{"(",
1902           FractionBox[
1903            RowBox[{"2", " ", "MT"}], "MS0"], ")"}], "2"], ")"}]}],
1904       RowBox[{"12", " ",
1905        SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], ",",
1906      FractionBox[
1907       RowBox[{
1908        SubsuperscriptBox["g", "s", "2"], " ",
1909        SubscriptBox["s0", "scalar"], " ",
1910        RowBox[{"sertLight", "(",
1911         SuperscriptBox[
1912          RowBox[{"(",
1913           FractionBox[
1914            RowBox[{"2", " ", "MT"}], "MS0"], ")"}], "2"], ")"}]}],
1915       RowBox[{"12", " ",
1916        SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}], "]"}]}], "}"}],
1917  TraditionalForm]], "Output",
1918 CellChangeTimes->{
1919  3.576908749596757*^9, 3.576909114004822*^9, 3.576921179527534*^9,
1920   3.5769993787309217`*^9, 3.577000546720379*^9, 3.577001356115144*^9,
1921   3.577001733823744*^9, {3.577165329003004*^9, 3.57716535248153*^9},
1922   3.5781364664959373`*^9, 3.578136661681057*^9, {3.5795063325317183`*^9,
1923   3.579506338165695*^9}}]
1924}, Open  ]],
1925
1926Cell[CellGroupData[{
1927
1928Cell[BoxData[
1929 RowBox[{"Definitions", "/.",
1930  RowBox[{"(",
1931   RowBox[{"s0fusionAxial", " ", "/.", " ",
1932    RowBox[{"(",
1933     RowBox[{"M$Parameters", "/.",
1934      RowBox[{
1935       RowBox[{"Equal", "[",
1936        RowBox[{"x_", ",", "y_"}], "]"}], "\[Rule]",
1937       RowBox[{"(",
1938        RowBox[{"x", "->", "y"}], ")"}]}]}], ")"}]}], ")"}]}]], "Input",
1939 CellChangeTimes->{{3.5769086659741497`*^9, 3.5769087491115427`*^9}, {
1940  3.576909112535284*^9, 3.576909138039616*^9}, {3.5769092211450033`*^9,
1941  3.5769092453684473`*^9}, {3.57716536154286*^9, 3.5771653634933443`*^9}}],
1942
1943Cell[BoxData[
1944 FormBox[
1945  RowBox[{"{",
1946   RowBox[{
1947    SubscriptBox["s0", "fusionAxial"], "\[RuleDelayed]",
1948    RowBox[{"If", "[",
1949     RowBox[{
1950      RowBox[{
1951       RowBox[{"NumericalValue", "(", "MS0", ")"}], ">",
1952       RowBox[{"2", " ",
1953        RowBox[{"NumericalValue", "(", "MT", ")"}]}]}], ",",
1954      FractionBox[
1955       RowBox[{
1956        SubscriptBox["s0", "axial"], " ",
1957        SubsuperscriptBox["g", "s", "2"], " ",
1958        RowBox[{"serpHeavy", "(",
1959         SuperscriptBox[
1960          RowBox[{"(",
1961           FractionBox[
1962            RowBox[{"2", " ", "MT"}], "MS0"], ")"}], "2"], ")"}]}],
1963       RowBox[{"8", " ",
1964        SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], ",",
1965      FractionBox[
1966       RowBox[{
1967        SubscriptBox["s0", "axial"], " ",
1968        SubsuperscriptBox["g", "s", "2"], " ",
1969        RowBox[{"serpLight", "(",
1970         SuperscriptBox[
1971          RowBox[{"(",
1972           FractionBox[
1973            RowBox[{"2", " ", "MT"}], "MS0"], ")"}], "2"], ")"}]}],
1974       RowBox[{"8", " ",
1975        SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}], "]"}]}], "}"}],
1976  TraditionalForm]], "Output",
1977 CellChangeTimes->{
1978  3.576909138493441*^9, {3.5769092272314157`*^9, 3.576909250852874*^9},
1979   3.576921181127459*^9, 3.576999384359323*^9, 3.5770005513604107`*^9,
1980   3.577001361434181*^9, 3.577001730831819*^9, 3.5771653641602077`*^9,
1981   3.578136518185392*^9, 3.578136664065669*^9, {3.579506341798462*^9,
1982   3.579506347651203*^9}}]
1983}, Open  ]],
1984
1985Cell[CellGroupData[{
1986
1987Cell[BoxData[
1988 RowBox[{"FeynmanRules", "[",
1989  RowBox[{
1990   RowBox[{"LS0ggfusionScalar", "/.", "dummies"}], ",", " ",
1991   RowBox[{"ScreenOutput", "\[Rule]", "False"}], ",", " ",
1992   RowBox[{"MaxParticles", "\[Rule]", "3"}]}], "]"}]], "Input",
1993 CellChangeTimes->{{3.576846415769596*^9, 3.576846477175753*^9}, {
1994   3.578136840432412*^9, 3.578136882520363*^9}, 3.578136971269651*^9, {
1995   3.578137076404581*^9, 3.578137096611326*^9}}],
1996
1997Cell[CellGroupData[{
1998
1999Cell[BoxData[
2000 FormBox[
2001  StyleBox["\<\"Starting Feynman rule calculation.\"\>",
2002   StripOnInput->False,
2003   LineColor->RGBColor[1, 0.5, 0],
2004   FrontFaceColor->RGBColor[1, 0.5, 0],
2005   BackFaceColor->RGBColor[1, 0.5, 0],
2006   GraphicsColor->RGBColor[1, 0.5, 0],
2007   FontWeight->Bold,
2008   FontColor->RGBColor[1, 0.5, 0]], TraditionalForm]], "Print",
2009 CellChangeTimes->{
2010  3.576846436478302*^9, 3.5768464780001297`*^9, 3.576909925354851*^9,
2011   3.576921195825272*^9, 3.576999435942572*^9, 3.577000555528265*^9,
2012   3.577001369440147*^9, 3.578136689176999*^9, {3.5781368641457148`*^9,
2013   3.5781368867732353`*^9}, 3.578137209798716*^9, 3.578137252589466*^9,
2014   3.578137391854391*^9}],
2015
2016Cell[BoxData[
2017 FormBox["\<\"Expanding the Lagrangian...\"\>", TraditionalForm]], "Print",
2018 CellChangeTimes->{
2019  3.576846436478302*^9, 3.5768464780001297`*^9, 3.576909925354851*^9,
2020   3.576921195825272*^9, 3.576999435942572*^9, 3.577000555528265*^9,
2021   3.577001369440147*^9, 3.578136689176999*^9, {3.5781368641457148`*^9,
2022   3.5781368867732353`*^9}, 3.578137209798716*^9, 3.578137252589466*^9,
2023   3.578137391893444*^9}],
2024
2025Cell[BoxData[
2026 FormBox[
2027  InterpretationBox[
2028   RowBox[{"\<\"Neglecting all terms with more than \"\>",
2029    "\[InvisibleSpace]", "\<\"3\"\>",
2030    "\[InvisibleSpace]", "\<\" particles.\"\>"}],
2031   SequenceForm["Neglecting all terms with more than ", "3", " particles."],
2032   Editable->False], TraditionalForm]], "Print",
2033 CellChangeTimes->{
2034  3.576846436478302*^9, 3.5768464780001297`*^9, 3.576909925354851*^9,
2035   3.576921195825272*^9, 3.576999435942572*^9, 3.577000555528265*^9,
2036   3.577001369440147*^9, 3.578136689176999*^9, {3.5781368641457148`*^9,
2037   3.5781368867732353`*^9}, 3.578137209798716*^9, 3.578137252589466*^9,
2038   3.578137391989097*^9}],
2039
2040Cell[BoxData[
2041 FormBox["\<\"Collecting the different structures that enter the vertex.\"\>",
2042   TraditionalForm]], "Print",
2043 CellChangeTimes->{
2044  3.576846436478302*^9, 3.5768464780001297`*^9, 3.576909925354851*^9,
2045   3.576921195825272*^9, 3.576999435942572*^9, 3.577000555528265*^9,
2046   3.577001369440147*^9, 3.578136689176999*^9, {3.5781368641457148`*^9,
2047   3.5781368867732353`*^9}, 3.578137209798716*^9, 3.578137252589466*^9,
2048   3.578137391990802*^9}],
2049
2050Cell[BoxData[
2051 FormBox[
2052  InterpretationBox[
2053   RowBox[{
2054   "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
2055-> starting the computation: \"\>", "\[InvisibleSpace]",
2056    DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, TraditionalForm],
2057     ImageSizeCache->{6., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
2058    "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
2059   SequenceForm[
2060   1, " possible non-zero vertices have been found -> starting the \
2061computation: ",
2062    Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
2063   Editable->False], TraditionalForm]], "Print",
2064 CellChangeTimes->{
2065  3.576846436478302*^9, 3.5768464780001297`*^9, 3.576909925354851*^9,
2066   3.576921195825272*^9, 3.576999435942572*^9, 3.577000555528265*^9,
2067   3.577001369440147*^9, 3.578136689176999*^9, {3.5781368641457148`*^9,
2068   3.5781368867732353`*^9}, 3.578137209798716*^9, 3.578137252589466*^9,
2069   3.578137391993469*^9}],
2070
2071Cell[BoxData[
2072 FormBox["\<\"1 vertex obtained.\"\>", TraditionalForm]], "Print",
2073 CellChangeTimes->{
2074  3.576846436478302*^9, 3.5768464780001297`*^9, 3.576909925354851*^9,
2075   3.576921195825272*^9, 3.576999435942572*^9, 3.577000555528265*^9,
2076   3.577001369440147*^9, 3.578136689176999*^9, {3.5781368641457148`*^9,
2077   3.5781368867732353`*^9}, 3.578137209798716*^9, 3.578137252589466*^9,
2078   3.578137391995347*^9}]
2079}, Closed]],
2080
2081Cell[BoxData[
2082 FormBox[
2083  RowBox[{"(", "\[NoBreak]", GridBox[{
2084     {
2085      RowBox[{"(", "\[NoBreak]", GridBox[{
2086         {"G", "1"},
2087         {"G", "2"},
2088         {"S0", "3"}
2089        },
2090        GridBoxAlignment->{
2091         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
2092          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
2093        GridBoxSpacings->{"Columns" -> {
2094            Offset[0.27999999999999997`], {
2095             Offset[0.7]},
2096            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
2097          "Rows" -> {
2098            Offset[0.2], {
2099             Offset[0.4]},
2100            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
2101      RowBox[{
2102       RowBox[{"\[ImaginaryI]", " ", "s0fs", " ",
2103        FormBox[
2104         SubscriptBox["\[Delta]",
2105          RowBox[{
2106           FormBox[
2107            SubscriptBox["\<\"a\"\>", "1"],
2108            TraditionalForm], ",",
2109           FormBox[
2110            SubscriptBox["\<\"a\"\>", "2"],
2111            TraditionalForm]}]],
2112         TraditionalForm], " ",
2113        FormBox[
2114         SubscriptBox["\[Eta]",
2115          RowBox[{
2116           FormBox[
2117            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2118            TraditionalForm], ",",
2119           FormBox[
2120            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2121            TraditionalForm]}]],
2122         TraditionalForm], " ",
2123        FormBox[
2124         RowBox[{
2125          SubscriptBox["\<\"p\"\>", "1"], ".",
2126          SubscriptBox["\<\"p\"\>", "2"]}],
2127         TraditionalForm]}], "-",
2128       RowBox[{"\[ImaginaryI]", " ", "s0fs", " ",
2129        FormBox[
2130         SubsuperscriptBox["\<\"p\"\>", "1",
2131          FormBox[
2132           SubscriptBox["\<\"\[Mu]\"\>", "2"],
2133           TraditionalForm]],
2134         TraditionalForm], " ",
2135        FormBox[
2136         SubsuperscriptBox["\<\"p\"\>", "2",
2137          FormBox[
2138           SubscriptBox["\<\"\[Mu]\"\>", "1"],
2139           TraditionalForm]],
2140         TraditionalForm], " ",
2141        FormBox[
2142         SubscriptBox["\[Delta]",
2143          RowBox[{
2144           FormBox[
2145            SubscriptBox["\<\"a\"\>", "1"],
2146            TraditionalForm], ",",
2147           FormBox[
2148            SubscriptBox["\<\"a\"\>", "2"],
2149            TraditionalForm]}]],
2150         TraditionalForm]}]}]}
2151    },
2152    GridBoxAlignment->{
2153     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2154      "RowsIndexed" -> {}},
2155    GridBoxSpacings->{"Columns" -> {
2156        Offset[0.27999999999999997`], {
2157         Offset[0.7]},
2158        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2159        Offset[0.2], {
2160         Offset[0.4]},
2161        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
2162  TraditionalForm]], "Output",
2163 CellChangeTimes->{
2164  3.576846437652829*^9, 3.57684647809168*^9, 3.5769099254964743`*^9,
2165   3.5769211959328127`*^9, 3.576999436097315*^9, 3.577000555652252*^9,
2166   3.5770013695722237`*^9, 3.577001718950753*^9, 3.578136690031889*^9, {
2167   3.578136864311318*^9, 3.578136886920702*^9}, 3.578137210017687*^9,
2168   3.578137252744005*^9, 3.578137391999443*^9}]
2169}, Open  ]],
2170
2171Cell[CellGroupData[{
2172
2173Cell[BoxData[
2174 RowBox[{"FeynmanRules", "[",
2175  RowBox[{
2176   RowBox[{"LS0ggfusionAxial", "/.", "dummies"}], ",", " ",
2177   RowBox[{"ScreenOutput", "\[Rule]", "False"}], ",", " ",
2178   RowBox[{"MaxParticles", "\[Rule]", "3"}]}], "]"}]], "Input",
2179 CellChangeTimes->{{3.5768464932886887`*^9, 3.576846494055841*^9}, {
2180  3.5781369615894403`*^9, 3.578136975184288*^9}, {3.5781370632245083`*^9,
2181  3.578137087635084*^9}, {3.578137258102076*^9, 3.578137259333209*^9}}],
2182
2183Cell[CellGroupData[{
2184
2185Cell[BoxData[
2186 FormBox[
2187  StyleBox["\<\"Starting Feynman rule calculation.\"\>",
2188   StripOnInput->False,
2189   LineColor->RGBColor[1, 0.5, 0],
2190   FrontFaceColor->RGBColor[1, 0.5, 0],
2191   BackFaceColor->RGBColor[1, 0.5, 0],
2192   GraphicsColor->RGBColor[1, 0.5, 0],
2193   FontWeight->Bold,
2194   FontColor->RGBColor[1, 0.5, 0]], TraditionalForm]], "Print",
2195 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
2196  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
2197  3.577001371322928*^9, 3.5781367464180803`*^9, 3.578136975937731*^9,
2198  3.578137067621958*^9, 3.57813722800391*^9, 3.578137260306508*^9}],
2199
2200Cell[BoxData[
2201 FormBox["\<\"Expanding the Lagrangian...\"\>", TraditionalForm]], "Print",
2202 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
2203  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
2204  3.577001371322928*^9, 3.5781367464180803`*^9, 3.578136975937731*^9,
2205  3.578137067621958*^9, 3.57813722800391*^9, 3.5781372603340673`*^9}],
2206
2207Cell[BoxData[
2208 FormBox[
2209  InterpretationBox[
2210   RowBox[{"\<\"Neglecting all terms with more than \"\>",
2211    "\[InvisibleSpace]", "\<\"3\"\>",
2212    "\[InvisibleSpace]", "\<\" particles.\"\>"}],
2213   SequenceForm["Neglecting all terms with more than ", "3", " particles."],
2214   Editable->False], TraditionalForm]], "Print",
2215 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
2216  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
2217  3.577001371322928*^9, 3.5781367464180803`*^9, 3.578136975937731*^9,
2218  3.578137067621958*^9, 3.57813722800391*^9, 3.578137260505682*^9}],
2219
2220Cell[BoxData[
2221 FormBox["\<\"Collecting the different structures that enter the vertex.\"\>",
2222   TraditionalForm]], "Print",
2223 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
2224  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
2225  3.577001371322928*^9, 3.5781367464180803`*^9, 3.578136975937731*^9,
2226  3.578137067621958*^9, 3.57813722800391*^9, 3.578137260589157*^9}],
2227
2228Cell[BoxData[
2229 FormBox[
2230  InterpretationBox[
2231   RowBox[{
2232   "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
2233-> starting the computation: \"\>", "\[InvisibleSpace]",
2234    DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, TraditionalForm],
2235     ImageSizeCache->{6., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
2236    "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
2237   SequenceForm[
2238   1, " possible non-zero vertices have been found -> starting the \
2239computation: ",
2240    Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
2241   Editable->False], TraditionalForm]], "Print",
2242 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
2243  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
2244  3.577001371322928*^9, 3.5781367464180803`*^9, 3.578136975937731*^9,
2245  3.578137067621958*^9, 3.57813722800391*^9, 3.57813726059202*^9}],
2246
2247Cell[BoxData[
2248 FormBox["\<\"1 vertex obtained.\"\>", TraditionalForm]], "Print",
2249 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
2250  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
2251  3.577001371322928*^9, 3.5781367464180803`*^9, 3.578136975937731*^9,
2252  3.578137067621958*^9, 3.57813722800391*^9, 3.578137260678412*^9}]
2253}, Closed]],
2254
2255Cell[BoxData[
2256 FormBox[
2257  RowBox[{"(", "\[NoBreak]", GridBox[{
2258     {
2259      RowBox[{"(", "\[NoBreak]", GridBox[{
2260         {"G", "1"},
2261         {"G", "2"},
2262         {"S0", "3"}
2263        },
2264        GridBoxAlignment->{
2265         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
2266          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
2267        GridBoxSpacings->{"Columns" -> {
2268            Offset[0.27999999999999997`], {
2269             Offset[0.7]},
2270            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
2271          "Rows" -> {
2272            Offset[0.2], {
2273             Offset[0.4]},
2274            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
2275      RowBox[{
2276       RowBox[{
2277        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2278        FormBox[
2279         SubscriptBox["\[Epsilon]",
2280          RowBox[{
2281           FormBox[
2282            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2283            TraditionalForm], ",",
2284           FormBox[
2285            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2286            TraditionalForm], ",",
2287           FormBox["\[Alpha]1",
2288            TraditionalForm], ",",
2289           FormBox["\[Beta]1",
2290            TraditionalForm]}]],
2291         TraditionalForm], " ",
2292        FormBox[
2293         SubsuperscriptBox["\<\"p\"\>", "1",
2294          FormBox["\[Beta]1",
2295           TraditionalForm]],
2296         TraditionalForm], " ",
2297        FormBox[
2298         SubsuperscriptBox["\<\"p\"\>", "2",
2299          FormBox["\[Alpha]1",
2300           TraditionalForm]],
2301         TraditionalForm], " ",
2302        FormBox[
2303         SubscriptBox["\[Delta]",
2304          RowBox[{
2305           FormBox[
2306            SubscriptBox["\<\"a\"\>", "1"],
2307            TraditionalForm], ",",
2308           FormBox[
2309            SubscriptBox["\<\"a\"\>", "2"],
2310            TraditionalForm]}]],
2311         TraditionalForm]}], "+",
2312       RowBox[{
2313        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2314        FormBox[
2315         SubscriptBox["\[Epsilon]",
2316          RowBox[{
2317           FormBox[
2318            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2319            TraditionalForm], ",",
2320           FormBox[
2321            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2322            TraditionalForm], ",",
2323           FormBox["\[Alpha]1",
2324            TraditionalForm], ",",
2325           FormBox["\[Delta]1",
2326            TraditionalForm]}]],
2327         TraditionalForm], " ",
2328        FormBox[
2329         SubsuperscriptBox["\<\"p\"\>", "1",
2330          FormBox["\[Delta]1",
2331           TraditionalForm]],
2332         TraditionalForm], " ",
2333        FormBox[
2334         SubsuperscriptBox["\<\"p\"\>", "2",
2335          FormBox["\[Alpha]1",
2336           TraditionalForm]],
2337         TraditionalForm], " ",
2338        FormBox[
2339         SubscriptBox["\[Delta]",
2340          RowBox[{
2341           FormBox[
2342            SubscriptBox["\<\"a\"\>", "1"],
2343            TraditionalForm], ",",
2344           FormBox[
2345            SubscriptBox["\<\"a\"\>", "2"],
2346            TraditionalForm]}]],
2347         TraditionalForm]}], "-",
2348       RowBox[{
2349        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2350        FormBox[
2351         SubscriptBox["\[Epsilon]",
2352          RowBox[{
2353           FormBox[
2354            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2355            TraditionalForm], ",",
2356           FormBox[
2357            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2358            TraditionalForm], ",",
2359           FormBox["\[Alpha]1",
2360            TraditionalForm], ",",
2361           FormBox["\[Beta]1",
2362            TraditionalForm]}]],
2363         TraditionalForm], " ",
2364        FormBox[
2365         SubsuperscriptBox["\<\"p\"\>", "1",
2366          FormBox["\[Alpha]1",
2367           TraditionalForm]],
2368         TraditionalForm], " ",
2369        FormBox[
2370         SubsuperscriptBox["\<\"p\"\>", "2",
2371          FormBox["\[Beta]1",
2372           TraditionalForm]],
2373         TraditionalForm], " ",
2374        FormBox[
2375         SubscriptBox["\[Delta]",
2376          RowBox[{
2377           FormBox[
2378            SubscriptBox["\<\"a\"\>", "1"],
2379            TraditionalForm], ",",
2380           FormBox[
2381            SubscriptBox["\<\"a\"\>", "2"],
2382            TraditionalForm]}]],
2383         TraditionalForm]}], "-",
2384       RowBox[{
2385        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2386        FormBox[
2387         SubscriptBox["\[Epsilon]",
2388          RowBox[{
2389           FormBox[
2390            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2391            TraditionalForm], ",",
2392           FormBox[
2393            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2394            TraditionalForm], ",",
2395           FormBox["\[Gamma]1",
2396            TraditionalForm], ",",
2397           FormBox["\[Beta]1",
2398            TraditionalForm]}]],
2399         TraditionalForm], " ",
2400        FormBox[
2401         SubsuperscriptBox["\<\"p\"\>", "1",
2402          FormBox["\[Gamma]1",
2403           TraditionalForm]],
2404         TraditionalForm], " ",
2405        FormBox[
2406         SubsuperscriptBox["\<\"p\"\>", "2",
2407          FormBox["\[Beta]1",
2408           TraditionalForm]],
2409         TraditionalForm], " ",
2410        FormBox[
2411         SubscriptBox["\[Delta]",
2412          RowBox[{
2413           FormBox[
2414            SubscriptBox["\<\"a\"\>", "1"],
2415            TraditionalForm], ",",
2416           FormBox[
2417            SubscriptBox["\<\"a\"\>", "2"],
2418            TraditionalForm]}]],
2419         TraditionalForm]}], "+",
2420       RowBox[{
2421        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2422        FormBox[
2423         SubscriptBox["\[Epsilon]",
2424          RowBox[{
2425           FormBox[
2426            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2427            TraditionalForm], ",",
2428           FormBox[
2429            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2430            TraditionalForm], ",",
2431           FormBox["\[Gamma]1",
2432            TraditionalForm], ",",
2433           FormBox["\[Beta]1",
2434            TraditionalForm]}]],
2435         TraditionalForm], " ",
2436        FormBox[
2437         SubsuperscriptBox["\<\"p\"\>", "1",
2438          FormBox["\[Beta]1",
2439           TraditionalForm]],
2440         TraditionalForm], " ",
2441        FormBox[
2442         SubsuperscriptBox["\<\"p\"\>", "2",
2443          FormBox["\[Gamma]1",
2444           TraditionalForm]],
2445         TraditionalForm], " ",
2446        FormBox[
2447         SubscriptBox["\[Delta]",
2448          RowBox[{
2449           FormBox[
2450            SubscriptBox["\<\"a\"\>", "1"],
2451            TraditionalForm], ",",
2452           FormBox[
2453            SubscriptBox["\<\"a\"\>", "2"],
2454            TraditionalForm]}]],
2455         TraditionalForm]}], "+",
2456       RowBox[{
2457        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2458        FormBox[
2459         SubscriptBox["\[Epsilon]",
2460          RowBox[{
2461           FormBox[
2462            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2463            TraditionalForm], ",",
2464           FormBox[
2465            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2466            TraditionalForm], ",",
2467           FormBox["\[Gamma]1",
2468            TraditionalForm], ",",
2469           FormBox["\[Delta]1",
2470            TraditionalForm]}]],
2471         TraditionalForm], " ",
2472        FormBox[
2473         SubsuperscriptBox["\<\"p\"\>", "1",
2474          FormBox["\[Delta]1",
2475           TraditionalForm]],
2476         TraditionalForm], " ",
2477        FormBox[
2478         SubsuperscriptBox["\<\"p\"\>", "2",
2479          FormBox["\[Gamma]1",
2480           TraditionalForm]],
2481         TraditionalForm], " ",
2482        FormBox[
2483         SubscriptBox["\[Delta]",
2484          RowBox[{
2485           FormBox[
2486            SubscriptBox["\<\"a\"\>", "1"],
2487            TraditionalForm], ",",
2488           FormBox[
2489            SubscriptBox["\<\"a\"\>", "2"],
2490            TraditionalForm]}]],
2491         TraditionalForm]}], "-",
2492       RowBox[{
2493        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2494        FormBox[
2495         SubscriptBox["\[Epsilon]",
2496          RowBox[{
2497           FormBox[
2498            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2499            TraditionalForm], ",",
2500           FormBox[
2501            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2502            TraditionalForm], ",",
2503           FormBox["\[Alpha]1",
2504            TraditionalForm], ",",
2505           FormBox["\[Delta]1",
2506            TraditionalForm]}]],
2507         TraditionalForm], " ",
2508        FormBox[
2509         SubsuperscriptBox["\<\"p\"\>", "1",
2510          FormBox["\[Alpha]1",
2511           TraditionalForm]],
2512         TraditionalForm], " ",
2513        FormBox[
2514         SubsuperscriptBox["\<\"p\"\>", "2",
2515          FormBox["\[Delta]1",
2516           TraditionalForm]],
2517         TraditionalForm], " ",
2518        FormBox[
2519         SubscriptBox["\[Delta]",
2520          RowBox[{
2521           FormBox[
2522            SubscriptBox["\<\"a\"\>", "1"],
2523            TraditionalForm], ",",
2524           FormBox[
2525            SubscriptBox["\<\"a\"\>", "2"],
2526            TraditionalForm]}]],
2527         TraditionalForm]}], "-",
2528       RowBox[{
2529        FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", "s0fa", " ",
2530        FormBox[
2531         SubscriptBox["\[Epsilon]",
2532          RowBox[{
2533           FormBox[
2534            SubscriptBox["\<\"\[Mu]\"\>", "1"],
2535            TraditionalForm], ",",
2536           FormBox[
2537            SubscriptBox["\<\"\[Mu]\"\>", "2"],
2538            TraditionalForm], ",",
2539           FormBox["\[Gamma]1",
2540            TraditionalForm], ",",
2541           FormBox["\[Delta]1",
2542            TraditionalForm]}]],
2543         TraditionalForm], " ",
2544        FormBox[
2545         SubsuperscriptBox["\<\"p\"\>", "1",
2546          FormBox["\[Gamma]1",
2547           TraditionalForm]],
2548         TraditionalForm], " ",
2549        FormBox[
2550         SubsuperscriptBox["\<\"p\"\>", "2",
2551          FormBox["\[Delta]1",
2552           TraditionalForm]],
2553         TraditionalForm], " ",
2554        FormBox[
2555         SubscriptBox["\[Delta]",
2556          RowBox[{
2557           FormBox[
2558            SubscriptBox["\<\"a\"\>", "1"],
2559            TraditionalForm], ",",
2560           FormBox[
2561            SubscriptBox["\<\"a\"\>", "2"],
2562            TraditionalForm]}]],
2563         TraditionalForm]}]}]}
2564    },
2565    GridBoxAlignment->{
2566     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2567      "RowsIndexed" -> {}},
2568    GridBoxSpacings->{"Columns" -> {
2569        Offset[0.27999999999999997`], {
2570         Offset[0.7]},
2571        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2572        Offset[0.2], {
2573         Offset[0.4]},
2574        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
2575  TraditionalForm]], "Output",
2576 CellChangeTimes->{3.576846494930935*^9, 3.576909928176862*^9,
2577  3.5769212022021008`*^9, 3.576999439193357*^9, 3.577000563792943*^9,
2578  3.5770013717075853`*^9, 3.577001713117086*^9, 3.578136747315556*^9,
2579  3.5781369763395348`*^9, 3.578137068014584*^9, 3.578137228315291*^9,
2580  3.578137260690695*^9}]
2581}, Open  ]]
2582}, Open  ]],
2583
2584Cell[CellGroupData[{
2585
2586Cell["Width of the resonance", "Subsubtitle",
2587 CellChangeTimes->{{3.576926002258409*^9, 3.576926036840067*^9}}],
2588
2589Cell["\<\
2590The width of the resonance was calculated in FeynRules, but then hardcoded, \
2591because depending on the mass of the scalar its decay width is governed by \
2592different decays. The value was also checked numerically in MadGraph5.\
2593\>", "Text",
2594 CellChangeTimes->{{3.5769260408749847`*^9, 3.576926054056046*^9}, {
2595  3.576926178235866*^9, 3.576926190359894*^9}, {3.5769994470391483`*^9,
2596  3.576999453695177*^9}, {3.5769996225751343`*^9, 3.5769996789756927`*^9}, {
2597  3.5770115235859127`*^9, 3.577011533218289*^9}, {3.578143572482514*^9,
2598  3.5781435849298353`*^9}, {3.5781436164661427`*^9, 3.5781436173141813`*^9}, {
2599  3.5832343177354527`*^9, 3.5832343190309963`*^9}}],
2600
2601Cell[CellGroupData[{
2602
2603Cell[BoxData[
2604 RowBox[{"Definitions", "/.",
2605  RowBox[{"(",
2606   RowBox[{"WS0", "/.",
2607    RowBox[{"(",
2608     RowBox[{"M$Parameters", "/.",
2609      RowBox[{
2610       RowBox[{"Equal", "[",
2611        RowBox[{"x_", ",", "y_"}], "]"}], "\[Rule]",
2612       RowBox[{"(",
2613        RowBox[{"x", "\[Rule]", "y"}], ")"}]}]}], ")"}]}], ")"}]}]], "Input",
2614 CellChangeTimes->{{3.577000585187807*^9, 3.577000586384079*^9}, {
2615  3.577000860725183*^9, 3.577001031156968*^9}, {3.577001099301875*^9,
2616  3.577001100130754*^9}, {3.577001379219845*^9, 3.577001428355833*^9}, {
2617  3.5771653866789017`*^9, 3.5771654069167233`*^9}}],
2618
2619Cell[BoxData[
2620 FormBox[
2621  RowBox[{"{",
2622   RowBox[{"WS0", "\[RuleDelayed]",
2623    RowBox[{"If", "[",
2624     RowBox[{
2625      RowBox[{
2626       RowBox[{"NumericalValue", "(", "MS0", ")"}], ">",
2627       RowBox[{"2", " ",
2628        RowBox[{"NumericalValue", "(", "MT", ")"}]}]}], ",",
2629      RowBox[{
2630       FractionBox[
2631        RowBox[{
2632         SuperscriptBox["MS0", "3"], " ",
2633         SuperscriptBox[
2634          TemplateBox[{SubscriptBox["s0", "fusionScalar"]},
2635           "Abs"], "2"]}],
2636        RowBox[{"8", " ", "\[Pi]"}]], "+",
2637       FractionBox[
2638        RowBox[{"3", " ",
2639         SuperscriptBox["MT", "2"], " ",
2640         SqrtBox[
2641          RowBox[{
2642           SuperscriptBox["MS0", "4"], "-",
2643           RowBox[{"4", " ",
2644            SuperscriptBox["MS0", "2"], " ",
2645            SuperscriptBox["MT", "2"]}]}]], " ",
2646         RowBox[{"(",
2647          RowBox[{
2648           RowBox[{
2649            SuperscriptBox["MS0", "2"], " ",
2650            RowBox[{"(",
2651             RowBox[{
2652              SubsuperscriptBox["s0", "axial", "2"], "+",
2653              SubsuperscriptBox["s0", "scalar", "2"]}], ")"}]}], "-",
2654           RowBox[{"4", " ",
2655            SuperscriptBox["MT", "2"], " ",
2656            SubsuperscriptBox["s0", "scalar", "2"]}]}], ")"}]}],
2657        RowBox[{"8", " ", "\[Pi]", " ",
2658         SuperscriptBox["MS0", "3"], " ",
2659         SuperscriptBox["vev", "2"]}]]}], ",",
2660      FractionBox[
2661       RowBox[{
2662        SuperscriptBox["MS0", "3"], " ",
2663        SuperscriptBox[
2664         TemplateBox[{SubscriptBox["s0", "fusionScalar"]},
2665          "Abs"], "2"]}],
2666       RowBox[{"8", " ", "\[Pi]"}]]}], "]"}]}], "}"}],
2667  TraditionalForm]], "Output",
2668 CellChangeTimes->{
2669  3.578203330374555*^9, 3.578205996394471*^9, {3.578385369154684*^9,
2670   3.578385378412673*^9}, {3.583231398786581*^9, 3.5832314058834743`*^9}, {
2671   3.583234497815926*^9, 3.5832345033159227`*^9}}]
2672}, Open  ]]
2673}, Open  ]]
2674}, Closed]],
2675
2676Cell[CellGroupData[{
2677
2678Cell["Spin 0, color octet", "Subtitle",
2679 CellChangeTimes->{{3.5763186596886253`*^9, 3.576318674225849*^9}, {
2680  3.576318938377852*^9, 3.576318939322701*^9}, {3.577011473122003*^9,
2681  3.577011473969521*^9}, {3.577168373072678*^9, 3.577168374000292*^9}}],
2682
2683Cell[CellGroupData[{
2684
2685Cell[BoxData["O0"], "Input",
2686 CellChangeTimes->{{3.577434847304411*^9, 3.577434850680747*^9}}],
2687
2688Cell[BoxData["O0"], "Output",
2689 CellChangeTimes->{3.577434851541717*^9}]
2690}, Open  ]],
2691
2692Cell["\<\
2693Introducing a spin-0 color-octet coupled only to the physical top.
2694
2695The kinetic term creating a gluon-gluon-scalar vertex is neglected.
2696
2697The gluon fussion top loop is implemented as an effective operator in the \
2698lagrangian.
2699
2700Two parameters are introduced: o0scalar and o0axial. Dependent on them are \
2701the o0fusionScalar and o0fusionAxial which contain the integrated top loop.\
2702\>", "Text",
2703 CellChangeTimes->{{3.5768445062707157`*^9, 3.576844620532359*^9}, {
2704  3.5768446505800323`*^9, 3.576844668820506*^9}, {3.5768447014925127`*^9,
2705  3.57684471206841*^9}, {3.576845258132791*^9, 3.5768453245649548`*^9}, {
2706  3.576995784447092*^9, 3.576995811086684*^9}, {3.577175069154901*^9,
2707  3.577175072754261*^9}, {3.577434750743391*^9, 3.5774347689026213`*^9}, {
2708  3.577434834342506*^9, 3.5774348426303864`*^9}, {3.578303664966322*^9,
2709  3.578303690033896*^9}}],
2710
2711Cell[CellGroupData[{
2712
2713Cell["Coupling to top", "Subsubtitle",
2714 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}}],
2715
2716Cell[CellGroupData[{
2717
2718Cell[BoxData["LO0top"], "Input",
2719 CellChangeTimes->{{3.577174285330597*^9, 3.577174288012072*^9}}],
2720
2721Cell[BoxData[
2722 FormBox[
2723  RowBox[{
2724   FractionBox[
2725    RowBox[{"MT", " ",
2726     SubscriptBox["O0", "a"], " ",
2727     SubscriptBox["o0", "scalar"], " ",
2728     RowBox[{
2729      OverscriptBox["t", "\<\"-\"\>"], ".",
2730      SuperscriptBox["T", "a"], ".", "t"}]}], "vev"], "+",
2731   FractionBox[
2732    RowBox[{"\[ImaginaryI]", " ", "MT", " ",
2733     SubscriptBox["O0", "a"], " ",
2734     SubscriptBox["o0", "axial"], " ",
2735     RowBox[{
2736      OverscriptBox["t", "\<\"-\"\>"], ".",
2737      SuperscriptBox["T", "a"], ".",
2738      SuperscriptBox["\[Gamma]", "5"], ".", "t"}]}], "vev"]}],
2739  TraditionalForm]], "Output",
2740 CellChangeTimes->{
2741  3.5771742894426117`*^9, 3.577174398739113*^9, 3.577184030293065*^9,
2742   3.57718407104521*^9, 3.5783073902037888`*^9, 3.578307479242729*^9, {
2743   3.578381266800846*^9, 3.578381271238566*^9}}]
2744}, Open  ]],
2745
2746Cell[CellGroupData[{
2747
2748Cell[BoxData[
2749 RowBox[{"FeynmanRules", "[",
2750  RowBox[{"LO0top", ",", " ",
2751   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]], "Input",
2752 CellChangeTimes->{{3.5771743109337482`*^9, 3.577174311380574*^9}}],
2753
2754Cell[CellGroupData[{
2755
2756Cell[BoxData[
2757 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
2758  StripOnInput->False,
2759  LineColor->RGBColor[1, 0.5, 0],
2760  FrontFaceColor->RGBColor[1, 0.5, 0],
2761  BackFaceColor->RGBColor[1, 0.5, 0],
2762  GraphicsColor->RGBColor[1, 0.5, 0],
2763  FontWeight->Bold,
2764  FontColor->RGBColor[1, 0.5, 0]]], "Print",
2765 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
2766  3.5783073968912373`*^9}],
2767
2768Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
2769 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
2770  3.5783073969583397`*^9}],
2771
2772Cell[BoxData["\<\"Collecting the different structures that enter the \
2773vertex.\"\>"], "Print",
2774 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
2775  3.578307396960442*^9}],
2776
2777Cell[BoxData[
2778 InterpretationBox[
2779  RowBox[{
2780  "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
2781-> starting the computation: \"\>", "\[InvisibleSpace]",
2782   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
2783    ImageSizeCache->{7., {0., 7.}}], "\[InvisibleSpace]", "\<\" / \"\>",
2784   "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
2785  SequenceForm[
2786  1, " possible non-zero vertices have been found -> starting the \
2787computation: ",
2788   Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
2789  Editable->False]], "Print",
2790 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
2791  3.5783073969624968`*^9}],
2792
2793Cell[BoxData["\<\"1 vertex obtained.\"\>"], "Print",
2794 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
2795  3.578307396964003*^9}]
2796}, Closed]],
2797
2798Cell[BoxData[
2799 FormBox[
2800  RowBox[{"(", "\[NoBreak]", GridBox[{
2801     {
2802      RowBox[{"(", "\[NoBreak]", GridBox[{
2803         {
2804          OverscriptBox["t", "\<\"-\"\>"], "1"},
2805         {"t", "2"},
2806         {"O0", "3"}
2807        },
2808        GridBoxAlignment->{
2809         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
2810          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
2811        GridBoxSpacings->{"Columns" -> {
2812            Offset[0.27999999999999997`], {
2813             Offset[0.7]},
2814            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
2815          "Rows" -> {
2816            Offset[0.2], {
2817             Offset[0.4]},
2818            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
2819      RowBox[{
2820       FractionBox[
2821        RowBox[{"\[ImaginaryI]", " ", "MT", " ",
2822         SubscriptBox["o0", "scalar"], " ",
2823         SubscriptBox["\[Delta]",
2824          RowBox[{
2825           SubscriptBox["\<\"s\"\>", "1"], ",",
2826           SubscriptBox["\<\"s\"\>", "2"]}]], " ",
2827         SubsuperscriptBox["T",
2828          RowBox[{
2829           SubscriptBox["\<\"m\"\>", "1"], ",",
2830           SubscriptBox["\<\"m\"\>", "2"]}],
2831          SubscriptBox["\<\"a\"\>", "3"]]}], "vev"], "-",
2832       FractionBox[
2833        RowBox[{"MT", " ",
2834         SubscriptBox["o0", "axial"], " ",
2835         SubsuperscriptBox["\[Gamma]",
2836          RowBox[{
2837           SubscriptBox["\<\"s\"\>", "1"], ",",
2838           SubscriptBox["\<\"s\"\>", "2"]}], "5"], " ",
2839         SubsuperscriptBox["T",
2840          RowBox[{
2841           SubscriptBox["\<\"m\"\>", "1"], ",",
2842           SubscriptBox["\<\"m\"\>", "2"]}],
2843          SubscriptBox["\<\"a\"\>", "3"]]}], "vev"]}]}
2844    },
2845    GridBoxAlignment->{
2846     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2847      "RowsIndexed" -> {}},
2848    GridBoxSpacings->{"Columns" -> {
2849        Offset[0.27999999999999997`], {
2850         Offset[0.7]},
2851        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2852        Offset[0.2], {
2853         Offset[0.4]},
2854        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
2855  TraditionalForm]], "Output",
2856 CellChangeTimes->{
2857  3.577174312798154*^9, 3.577184078260206*^9, {3.57830739701258*^9,
2858   3.578307402611945*^9}}]
2859}, Open  ]]
2860}, Open  ]],
2861
2862Cell[CellGroupData[{
2863
2864Cell["Coupling to gluons (through a top loop)", "Subsubtitle",
2865 CellChangeTimes->{{3.576318687232041*^9, 3.576318725240529*^9}, {
2866  3.5768465205171947`*^9, 3.5768465221169167`*^9}}],
2867
2868Cell["With the following effective parameters", "Text",
2869 CellChangeTimes->{{3.576909145215076*^9, 3.57690917954064*^9}}],
2870
2871Cell[CellGroupData[{
2872
2873Cell[BoxData[
2874 RowBox[{"Definitions", "/.",
2875  RowBox[{"(",
2876   RowBox[{"o0fusionScalar", " ", "/.", " ",
2877    RowBox[{"(",
2878     RowBox[{"M$Parameters", "/.",
2879      RowBox[{
2880       RowBox[{"Equal", "[",
2881        RowBox[{"x_", ",", "y_"}], "]"}], "\[Rule]",
2882       RowBox[{"(",
2883        RowBox[{"x", "->", "y"}], ")"}]}]}], ")"}]}], ")"}]}]], "Input",
2884 CellChangeTimes->{{3.5769086659741497`*^9, 3.5769087491115427`*^9},
2885   3.576909112535284*^9, {3.577165324399412*^9, 3.577165351429234*^9}, {
2886   3.5774350106986637`*^9, 3.577435010858741*^9}}],
2887
2888Cell[BoxData[
2889 FormBox[
2890  RowBox[{"{",
2891   RowBox[{
2892    SubscriptBox["o0", "fusionScalar"], "\[RuleDelayed]",
2893    RowBox[{"If", "[",
2894     RowBox[{
2895      RowBox[{
2896       RowBox[{"NumericalValue", "(", "MO0", ")"}], ">",
2897       RowBox[{"2", " ",
2898        RowBox[{"NumericalValue", "(", "MT", ")"}]}]}], ",",
2899      RowBox[{"-",
2900       FractionBox[
2901        RowBox[{
2902         SubsuperscriptBox["g", "s", "2"], " ",
2903         SubscriptBox["o0", "scalar"], " ",
2904         RowBox[{"sertHeavy", "(",
2905          SuperscriptBox[
2906           RowBox[{"(",
2907            FractionBox[
2908             RowBox[{"2", " ", "MT"}], "MO0"], ")"}], "2"], ")"}]}],
2909        RowBox[{"12", " ",
2910         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}], ",",
2911      RowBox[{"-",
2912       FractionBox[
2913        RowBox[{
2914         SubsuperscriptBox["g", "s", "2"], " ",
2915         SubscriptBox["o0", "scalar"], " ",
2916         RowBox[{"sertLight", "(",
2917          SuperscriptBox[
2918           RowBox[{"(",
2919            FractionBox[
2920             RowBox[{"2", " ", "MT"}], "MO0"], ")"}], "2"], ")"}]}],
2921        RowBox[{"12", " ",
2922         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}]}], "]"}]}], "}"}],
2923  TraditionalForm]], "Output",
2924 CellChangeTimes->{
2925  3.576908749596757*^9, 3.576909114004822*^9, 3.576921179527534*^9,
2926   3.5769993787309217`*^9, 3.577000546720379*^9, 3.577001356115144*^9,
2927   3.577001733823744*^9, {3.577165329003004*^9, 3.57716535248153*^9}, {
2928   3.5774350121316233`*^9, 3.5774350174422703`*^9}, 3.578307424676525*^9,
2929   3.578307489895965*^9}]
2930}, Open  ]],
2931
2932Cell[CellGroupData[{
2933
2934Cell[BoxData[
2935 RowBox[{"Definitions", "/.",
2936  RowBox[{"(",
2937   RowBox[{"o0fusionAxial", " ", "/.", " ",
2938    RowBox[{"(",
2939     RowBox[{"M$Parameters", "/.",
2940      RowBox[{
2941       RowBox[{"Equal", "[",
2942        RowBox[{"x_", ",", "y_"}], "]"}], "\[Rule]",
2943       RowBox[{"(",
2944        RowBox[{"x", "->", "y"}], ")"}]}]}], ")"}]}], ")"}]}]], "Input",
2945 CellChangeTimes->{{3.5769086659741497`*^9, 3.5769087491115427`*^9}, {
2946  3.576909112535284*^9, 3.576909138039616*^9}, {3.5769092211450033`*^9,
2947  3.5769092453684473`*^9}, {3.57716536154286*^9, 3.5771653634933443`*^9}, {
2948  3.577435006586997*^9, 3.577435007098967*^9}}],
2949
2950Cell[BoxData[
2951 FormBox[
2952  RowBox[{"{",
2953   RowBox[{
2954    SubscriptBox["o0", "fusionAxial"], "\[RuleDelayed]",
2955    RowBox[{"If", "[",
2956     RowBox[{
2957      RowBox[{
2958       RowBox[{"NumericalValue", "(", "MO0", ")"}], ">",
2959       RowBox[{"2", " ",
2960        RowBox[{"NumericalValue", "(", "MT", ")"}]}]}], ",",
2961      RowBox[{"-",
2962       FractionBox[
2963        RowBox[{
2964         SubscriptBox["o0", "axial"], " ",
2965         SubsuperscriptBox["g", "s", "2"], " ",
2966         RowBox[{"serpHeavy", "(",
2967          SuperscriptBox[
2968           RowBox[{"(",
2969            FractionBox[
2970             RowBox[{"2", " ", "MT"}], "MO0"], ")"}], "2"], ")"}]}],
2971        RowBox[{"8", " ",
2972         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}], ",",
2973      RowBox[{"-",
2974       FractionBox[
2975        RowBox[{
2976         SubscriptBox["o0", "axial"], " ",
2977         SubsuperscriptBox["g", "s", "2"], " ",
2978         RowBox[{"serpLight", "(",
2979          SuperscriptBox[
2980           RowBox[{"(",
2981            FractionBox[
2982             RowBox[{"2", " ", "MT"}], "MO0"], ")"}], "2"], ")"}]}],
2983        RowBox[{"8", " ",
2984         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}]}], "]"}]}], "}"}],
2985  TraditionalForm]], "Output",
2986 CellChangeTimes->{
2987  3.576909138493441*^9, {3.5769092272314157`*^9, 3.576909250852874*^9},
2988   3.576921181127459*^9, 3.576999384359323*^9, 3.5770005513604107`*^9,
2989   3.577001361434181*^9, 3.577001730831819*^9, 3.5771653641602077`*^9, {
2990   3.577435014124652*^9, 3.577435020641736*^9}, {3.5783074945480337`*^9,
2991   3.578307498569057*^9}}]
2992}, Open  ]],
2993
2994Cell[CellGroupData[{
2995
2996Cell[BoxData[
2997 RowBox[{"FeynmanRules", "[",
2998  RowBox[{
2999   RowBox[{"LO0ggfusionScalar", "/.", "dummies"}], ",", " ",
3000   RowBox[{"ScreenOutput", "\[Rule]", "False"}], ",", " ",
3001   RowBox[{"MaxParticles", "\[Rule]", "3"}]}], "]"}]], "Input",
3002 CellChangeTimes->{{3.576846415769596*^9, 3.576846477175753*^9}, {
3003  3.5774350460572357`*^9, 3.5774350468252983`*^9}, {3.5783075149174843`*^9,
3004  3.578307526223881*^9}}],
3005
3006Cell[CellGroupData[{
3007
3008Cell[BoxData[
3009 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
3010  StripOnInput->False,
3011  LineColor->RGBColor[1, 0.5, 0],
3012  FrontFaceColor->RGBColor[1, 0.5, 0],
3013  BackFaceColor->RGBColor[1, 0.5, 0],
3014  GraphicsColor->RGBColor[1, 0.5, 0],
3015  FontWeight->Bold,
3016  FontColor->RGBColor[1, 0.5, 0]]], "Print",
3017 CellChangeTimes->{3.576846436478302*^9, 3.5768464780001297`*^9,
3018  3.576909925354851*^9, 3.576921195825272*^9, 3.576999435942572*^9,
3019  3.577000555528265*^9, 3.577001369440147*^9, 3.577435047719418*^9,
3020  3.578307527292119*^9, 3.57837557822195*^9}],
3021
3022Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
3023 CellChangeTimes->{3.576846436478302*^9, 3.5768464780001297`*^9,
3024  3.576909925354851*^9, 3.576921195825272*^9, 3.576999435942572*^9,
3025  3.577000555528265*^9, 3.577001369440147*^9, 3.577435047719418*^9,
3026  3.578307527292119*^9, 3.57837557827789*^9}],
3027
3028Cell[BoxData[
3029 InterpretationBox[
3030  RowBox[{"\<\"Neglecting all terms with more than \"\>",
3031   "\[InvisibleSpace]", "\<\"3\"\>",
3032   "\[InvisibleSpace]", "\<\" particles.\"\>"}],
3033  SequenceForm["Neglecting all terms with more than ", "3", " particles."],
3034  Editable->False]], "Print",
3035 CellChangeTimes->{3.576846436478302*^9, 3.5768464780001297`*^9,
3036  3.576909925354851*^9, 3.576921195825272*^9, 3.576999435942572*^9,
3037  3.577000555528265*^9, 3.577001369440147*^9, 3.577435047719418*^9,
3038  3.578307527292119*^9, 3.578375578360487*^9}],
3039
3040Cell[BoxData["\<\"Collecting the different structures that enter the \
3041vertex.\"\>"], "Print",
3042 CellChangeTimes->{3.576846436478302*^9, 3.5768464780001297`*^9,
3043  3.576909925354851*^9, 3.576921195825272*^9, 3.576999435942572*^9,
3044  3.577000555528265*^9, 3.577001369440147*^9, 3.577435047719418*^9,
3045  3.578307527292119*^9, 3.578375578368021*^9}],
3046
3047Cell[BoxData[
3048 InterpretationBox[
3049  RowBox[{
3050  "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
3051-> starting the computation: \"\>", "\[InvisibleSpace]",
3052   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
3053    ImageSizeCache->{7., {0., 7.}}], "\[InvisibleSpace]", "\<\" / \"\>",
3054   "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
3055  SequenceForm[
3056  1, " possible non-zero vertices have been found -> starting the \
3057computation: ",
3058   Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
3059  Editable->False]], "Print",
3060 CellChangeTimes->{3.576846436478302*^9, 3.5768464780001297`*^9,
3061  3.576909925354851*^9, 3.576921195825272*^9, 3.576999435942572*^9,
3062  3.577000555528265*^9, 3.577001369440147*^9, 3.577435047719418*^9,
3063  3.578307527292119*^9, 3.5783755783702497`*^9}],
3064
3065Cell[BoxData["\<\"1 vertex obtained.\"\>"], "Print",
3066 CellChangeTimes->{3.576846436478302*^9, 3.5768464780001297`*^9,
3067  3.576909925354851*^9, 3.576921195825272*^9, 3.576999435942572*^9,
3068  3.577000555528265*^9, 3.577001369440147*^9, 3.577435047719418*^9,
3069  3.578307527292119*^9, 3.578375578452856*^9}]
3070}, Closed]],
3071
3072Cell[BoxData[
3073 FormBox[
3074  RowBox[{"(", "\[NoBreak]", GridBox[{
3075     {
3076      RowBox[{"(", "\[NoBreak]", GridBox[{
3077         {"G", "1"},
3078         {"G", "2"},
3079         {"O0", "3"}
3080        },
3081        GridBoxAlignment->{
3082         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
3083          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
3084        GridBoxSpacings->{"Columns" -> {
3085            Offset[0.27999999999999997`], {
3086             Offset[0.7]},
3087            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
3088          "Rows" -> {
3089            Offset[0.2], {
3090             Offset[0.4]},
3091            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
3092      RowBox[{
3093       RowBox[{"\[ImaginaryI]", " ", "o0fs", " ",
3094        SubscriptBox["dSUN",
3095         RowBox[{
3096          SubscriptBox["\<\"a\"\>", "1"], ",",
3097          SubscriptBox["\<\"a\"\>", "2"], ",",
3098          SubscriptBox["\<\"a\"\>", "3"]}]], " ",
3099        SubscriptBox["\[Eta]",
3100         RowBox[{
3101          SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3102          SubscriptBox["\<\"\[Mu]\"\>", "2"]}]], " ",
3103        RowBox[{
3104         SubscriptBox["\<\"p\"\>", "1"], ".",
3105         SubscriptBox["p", "2"]}]}], "-",
3106       RowBox[{"\[ImaginaryI]", " ", "o0fs", " ",
3107        SubscriptBox["dSUN",
3108         RowBox[{
3109          SubscriptBox["\<\"a\"\>", "1"], ",",
3110          SubscriptBox["\<\"a\"\>", "2"], ",",
3111          SubscriptBox["\<\"a\"\>", "3"]}]], " ",
3112        SubsuperscriptBox["\<\"p\"\>", "1",
3113         SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
3114        SubsuperscriptBox["\<\"p\"\>", "2",
3115         SubscriptBox["\<\"\[Mu]\"\>", "1"]]}]}]}
3116    },
3117    GridBoxAlignment->{
3118     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3119      "RowsIndexed" -> {}},
3120    GridBoxSpacings->{"Columns" -> {
3121        Offset[0.27999999999999997`], {
3122         Offset[0.7]},
3123        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3124        Offset[0.2], {
3125         Offset[0.4]},
3126        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
3127  TraditionalForm]], "Output",
3128 CellChangeTimes->{
3129  3.576846437652829*^9, 3.57684647809168*^9, 3.5769099254964743`*^9,
3130   3.5769211959328127`*^9, 3.576999436097315*^9, 3.577000555652252*^9,
3131   3.5770013695722237`*^9, 3.577001718950753*^9, {3.5774350484868317`*^9,
3132   3.577435052674008*^9}, 3.578307528042903*^9, {3.578375578456437*^9,
3133   3.5783755912858543`*^9}}]
3134}, Open  ]],
3135
3136Cell[CellGroupData[{
3137
3138Cell[BoxData[
3139 RowBox[{"FeynmanRules", "[",
3140  RowBox[{"LO0ggfusionAxial", ",", " ",
3141   RowBox[{"ScreenOutput", "\[Rule]", "False"}], ",", " ",
3142   RowBox[{"MaxParticles", "\[Rule]", "3"}]}], "]"}]], "Input",
3143 CellChangeTimes->{{3.5768464932886887`*^9, 3.576846494055841*^9}, {
3144  3.5774350578812428`*^9, 3.5774350585855427`*^9}}],
3145
3146Cell[CellGroupData[{
3147
3148Cell[BoxData[
3149 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
3150  StripOnInput->False,
3151  LineColor->RGBColor[1, 0.5, 0],
3152  FrontFaceColor->RGBColor[1, 0.5, 0],
3153  BackFaceColor->RGBColor[1, 0.5, 0],
3154  GraphicsColor->RGBColor[1, 0.5, 0],
3155  FontWeight->Bold,
3156  FontColor->RGBColor[1, 0.5, 0]]], "Print",
3157 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
3158  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
3159  3.577001371322928*^9, 3.57743505941088*^9}],
3160
3161Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
3162 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
3163  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
3164  3.577001371322928*^9, 3.5774350594259043`*^9}],
3165
3166Cell[BoxData[
3167 InterpretationBox[
3168  RowBox[{"\<\"Neglecting all terms with more than \"\>",
3169   "\[InvisibleSpace]", "\<\"3\"\>",
3170   "\[InvisibleSpace]", "\<\" particles.\"\>"}],
3171  SequenceForm["Neglecting all terms with more than ", "3", " particles."],
3172  Editable->False]], "Print",
3173 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
3174  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
3175  3.577001371322928*^9, 3.577435060735322*^9}],
3176
3177Cell[BoxData["\<\"Collecting the different structures that enter the \
3178vertex.\"\>"], "Print",
3179 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
3180  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
3181  3.577001371322928*^9, 3.5774350608175097`*^9}],
3182
3183Cell[BoxData[
3184 InterpretationBox[
3185  RowBox[{
3186  "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
3187-> starting the computation: \"\>", "\[InvisibleSpace]",
3188   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
3189    ImageSizeCache->{92., {2., 7.}}], "\[InvisibleSpace]", "\<\" / \"\>",
3190   "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
3191  SequenceForm[
3192  1, " possible non-zero vertices have been found -> starting the \
3193computation: ",
3194   Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
3195  Editable->False]], "Print",
3196 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
3197  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
3198  3.577001371322928*^9, 3.577435060819861*^9}],
3199
3200Cell[BoxData["\<\"1 vertex obtained.\"\>"], "Print",
3201 CellChangeTimes->{3.5768464946235228`*^9, 3.576909927877137*^9,
3202  3.576921201908342*^9, 3.576999438792468*^9, 3.577000563392887*^9,
3203  3.577001371322928*^9, 3.577435061930241*^9}]
3204}, Closed]],
3205
3206Cell[BoxData[
3207 FormBox[
3208  RowBox[{"(", "\[NoBreak]", GridBox[{
3209     {
3210      RowBox[{"(", "\[NoBreak]", GridBox[{
3211         {"G", "1"},
3212         {"G", "2"},
3213         {"O0", "3"}
3214        },
3215        GridBoxAlignment->{
3216         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
3217          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
3218        GridBoxSpacings->{"Columns" -> {
3219            Offset[0.27999999999999997`], {
3220             Offset[0.7]},
3221            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
3222          "Rows" -> {
3223            Offset[0.2], {
3224             Offset[0.4]},
3225            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
3226      RowBox[{
3227       FractionBox[
3228        RowBox[{"\[ImaginaryI]", " ",
3229         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3230         SubsuperscriptBox["g", "s", "2"], " ",
3231         SubscriptBox["o0", "axial"], " ",
3232         SubscriptBox["\[Delta]",
3233          RowBox[{
3234           SubscriptBox["\<\"a\"\>", "1"], ",",
3235           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3236         SubscriptBox["\[Epsilon]",
3237          RowBox[{
3238           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3239           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3240           "\[Beta]1"}]], " ",
3241         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3242        RowBox[{"64", " ",
3243         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3244       FractionBox[
3245        RowBox[{"\[ImaginaryI]", " ",
3246         SuperscriptBox["MO0", "2"], " ",
3247         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3248         SubsuperscriptBox["g", "s", "2"], " ",
3249         SubscriptBox["o0", "axial"], " ",
3250         SubscriptBox["\[Delta]",
3251          RowBox[{
3252           SubscriptBox["\<\"a\"\>", "1"], ",",
3253           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3254         SubscriptBox["\[Epsilon]",
3255          RowBox[{
3256           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3257           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3258           "\[Beta]1"}]], " ",
3259         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3260        RowBox[{"768", " ",
3261         SuperscriptBox["MT", "2"], " ",
3262         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3263       FractionBox[
3264        RowBox[{"\[ImaginaryI]", " ",
3265         SuperscriptBox["MO0", "4"], " ",
3266         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3267         SubsuperscriptBox["g", "s", "2"], " ",
3268         SubscriptBox["o0", "axial"], " ",
3269         SubscriptBox["\[Delta]",
3270          RowBox[{
3271           SubscriptBox["\<\"a\"\>", "1"], ",",
3272           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3273         SubscriptBox["\[Epsilon]",
3274          RowBox[{
3275           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3276           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3277           "\[Beta]1"}]], " ",
3278         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3279        RowBox[{"5760", " ",
3280         SuperscriptBox["MT", "4"], " ",
3281         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3282       FractionBox[
3283        RowBox[{"\[ImaginaryI]", " ",
3284         SuperscriptBox["MO0", "6"], " ",
3285         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3286         SubsuperscriptBox["g", "s", "2"], " ",
3287         SubscriptBox["o0", "axial"], " ",
3288         SubscriptBox["\[Delta]",
3289          RowBox[{
3290           SubscriptBox["\<\"a\"\>", "1"], ",",
3291           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3292         SubscriptBox["\[Epsilon]",
3293          RowBox[{
3294           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3295           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3296           "\[Beta]1"}]], " ",
3297         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3298        RowBox[{"35840", " ",
3299         SuperscriptBox["MT", "6"], " ",
3300         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3301       FractionBox[
3302        RowBox[{"\[ImaginaryI]", " ",
3303         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3304         SubsuperscriptBox["g", "s", "2"], " ",
3305         SubscriptBox["o0", "axial"], " ",
3306         SubscriptBox["\[Delta]",
3307          RowBox[{
3308           SubscriptBox["\<\"a\"\>", "1"], ",",
3309           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3310         SubscriptBox["\[Epsilon]",
3311          RowBox[{
3312           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3313           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3314           "\[Delta]1"}]], " ",
3315         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3316        RowBox[{"64", " ",
3317         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3318       FractionBox[
3319        RowBox[{"\[ImaginaryI]", " ",
3320         SuperscriptBox["MO0", "2"], " ",
3321         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3322         SubsuperscriptBox["g", "s", "2"], " ",
3323         SubscriptBox["o0", "axial"], " ",
3324         SubscriptBox["\[Delta]",
3325          RowBox[{
3326           SubscriptBox["\<\"a\"\>", "1"], ",",
3327           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3328         SubscriptBox["\[Epsilon]",
3329          RowBox[{
3330           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3331           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3332           "\[Delta]1"}]], " ",
3333         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3334        RowBox[{"768", " ",
3335         SuperscriptBox["MT", "2"], " ",
3336         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3337       FractionBox[
3338        RowBox[{"\[ImaginaryI]", " ",
3339         SuperscriptBox["MO0", "4"], " ",
3340         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3341         SubsuperscriptBox["g", "s", "2"], " ",
3342         SubscriptBox["o0", "axial"], " ",
3343         SubscriptBox["\[Delta]",
3344          RowBox[{
3345           SubscriptBox["\<\"a\"\>", "1"], ",",
3346           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3347         SubscriptBox["\[Epsilon]",
3348          RowBox[{
3349           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3350           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3351           "\[Delta]1"}]], " ",
3352         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3353        RowBox[{"5760", " ",
3354         SuperscriptBox["MT", "4"], " ",
3355         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3356       FractionBox[
3357        RowBox[{"\[ImaginaryI]", " ",
3358         SuperscriptBox["MO0", "6"], " ",
3359         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3360         SubsuperscriptBox["g", "s", "2"], " ",
3361         SubscriptBox["o0", "axial"], " ",
3362         SubscriptBox["\[Delta]",
3363          RowBox[{
3364           SubscriptBox["\<\"a\"\>", "1"], ",",
3365           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3366         SubscriptBox["\[Epsilon]",
3367          RowBox[{
3368           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3369           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3370           "\[Delta]1"}]], " ",
3371         SubsuperscriptBox["\<\"p\"\>", "1", "\[Alpha]1"]}],
3372        RowBox[{"35840", " ",
3373         SuperscriptBox["MT", "6"], " ",
3374         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3375       FractionBox[
3376        RowBox[{"\[ImaginaryI]", " ",
3377         SubsuperscriptBox["g", "s", "2"], " ",
3378         SubscriptBox["o0", "axial"], " ",
3379         SubscriptBox["\[Epsilon]",
3380          RowBox[{
3381           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3382           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3383           "\[Beta]1"}]], " ",
3384         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3385         SubscriptBox["\[Delta]",
3386          RowBox[{
3387           SubscriptBox["\<\"a\"\>", "1"], ",",
3388           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3389         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3390        RowBox[{"64", " ",
3391         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3392       FractionBox[
3393        RowBox[{"\[ImaginaryI]", " ",
3394         SubsuperscriptBox["g", "s", "2"], " ",
3395         SubscriptBox["o0", "axial"], " ",
3396         SubscriptBox["\[Epsilon]",
3397          RowBox[{
3398           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3399           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3400           "\[Beta]1"}]], " ",
3401         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3402         SubscriptBox["\[Delta]",
3403          RowBox[{
3404           SubscriptBox["\<\"a\"\>", "1"], ",",
3405           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3406         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3407        RowBox[{"64", " ",
3408         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3409       FractionBox[
3410        RowBox[{"\[ImaginaryI]", " ",
3411         SubsuperscriptBox["g", "s", "2"], " ",
3412         SuperscriptBox["MO0", "2"], " ",
3413         SubscriptBox["o0", "axial"], " ",
3414         SubscriptBox["\[Epsilon]",
3415          RowBox[{
3416           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3417           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3418           "\[Beta]1"}]], " ",
3419         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3420         SubscriptBox["\[Delta]",
3421          RowBox[{
3422           SubscriptBox["\<\"a\"\>", "1"], ",",
3423           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3424         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3425        RowBox[{"768", " ",
3426         SuperscriptBox["MT", "2"], " ",
3427         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3428       FractionBox[
3429        RowBox[{"\[ImaginaryI]", " ",
3430         SubsuperscriptBox["g", "s", "2"], " ",
3431         SuperscriptBox["MO0", "2"], " ",
3432         SubscriptBox["o0", "axial"], " ",
3433         SubscriptBox["\[Epsilon]",
3434          RowBox[{
3435           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3436           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3437           "\[Beta]1"}]], " ",
3438         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3439         SubscriptBox["\[Delta]",
3440          RowBox[{
3441           SubscriptBox["\<\"a\"\>", "1"], ",",
3442           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3443         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3444        RowBox[{"768", " ",
3445         SuperscriptBox["MT", "2"], " ",
3446         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3447       FractionBox[
3448        RowBox[{"\[ImaginaryI]", " ",
3449         SubsuperscriptBox["g", "s", "2"], " ",
3450         SuperscriptBox["MO0", "4"], " ",
3451         SubscriptBox["o0", "axial"], " ",
3452         SubscriptBox["\[Epsilon]",
3453          RowBox[{
3454           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3455           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3456           "\[Beta]1"}]], " ",
3457         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3458         SubscriptBox["\[Delta]",
3459          RowBox[{
3460           SubscriptBox["\<\"a\"\>", "1"], ",",
3461           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3462         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3463        RowBox[{"5760", " ",
3464         SuperscriptBox["MT", "4"], " ",
3465         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3466       FractionBox[
3467        RowBox[{"\[ImaginaryI]", " ",
3468         SubsuperscriptBox["g", "s", "2"], " ",
3469         SuperscriptBox["MO0", "4"], " ",
3470         SubscriptBox["o0", "axial"], " ",
3471         SubscriptBox["\[Epsilon]",
3472          RowBox[{
3473           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3474           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3475           "\[Beta]1"}]], " ",
3476         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3477         SubscriptBox["\[Delta]",
3478          RowBox[{
3479           SubscriptBox["\<\"a\"\>", "1"], ",",
3480           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3481         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3482        RowBox[{"5760", " ",
3483         SuperscriptBox["MT", "4"], " ",
3484         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3485       FractionBox[
3486        RowBox[{"\[ImaginaryI]", " ",
3487         SubsuperscriptBox["g", "s", "2"], " ",
3488         SuperscriptBox["MO0", "6"], " ",
3489         SubscriptBox["o0", "axial"], " ",
3490         SubscriptBox["\[Epsilon]",
3491          RowBox[{
3492           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3493           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3494           "\[Beta]1"}]], " ",
3495         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3496         SubscriptBox["\[Delta]",
3497          RowBox[{
3498           SubscriptBox["\<\"a\"\>", "1"], ",",
3499           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3500         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3501        RowBox[{"35840", " ",
3502         SuperscriptBox["MT", "6"], " ",
3503         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3504       FractionBox[
3505        RowBox[{"\[ImaginaryI]", " ",
3506         SubsuperscriptBox["g", "s", "2"], " ",
3507         SuperscriptBox["MO0", "6"], " ",
3508         SubscriptBox["o0", "axial"], " ",
3509         SubscriptBox["\[Epsilon]",
3510          RowBox[{
3511           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3512           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3513           "\[Beta]1"}]], " ",
3514         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3515         SubscriptBox["\[Delta]",
3516          RowBox[{
3517           SubscriptBox["\<\"a\"\>", "1"], ",",
3518           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3519         SubsuperscriptBox["\<\"p\"\>", "1", "\[Beta]1"]}],
3520        RowBox[{"35840", " ",
3521         SuperscriptBox["MT", "6"], " ",
3522         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3523       FractionBox[
3524        RowBox[{"\[ImaginaryI]", " ",
3525         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3526         SubsuperscriptBox["g", "s", "2"], " ",
3527         SubscriptBox["o0", "axial"], " ",
3528         SubscriptBox["\[Delta]",
3529          RowBox[{
3530           SubscriptBox["\<\"a\"\>", "1"], ",",
3531           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3532         SubscriptBox["\[Epsilon]",
3533          RowBox[{
3534           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3535           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3536           "\[Beta]1"}]], " ",
3537         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3538        RowBox[{"64", " ",
3539         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3540       FractionBox[
3541        RowBox[{"\[ImaginaryI]", " ",
3542         SuperscriptBox["MO0", "2"], " ",
3543         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3544         SubsuperscriptBox["g", "s", "2"], " ",
3545         SubscriptBox["o0", "axial"], " ",
3546         SubscriptBox["\[Delta]",
3547          RowBox[{
3548           SubscriptBox["\<\"a\"\>", "1"], ",",
3549           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3550         SubscriptBox["\[Epsilon]",
3551          RowBox[{
3552           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3553           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3554           "\[Beta]1"}]], " ",
3555         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3556        RowBox[{"768", " ",
3557         SuperscriptBox["MT", "2"], " ",
3558         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3559       FractionBox[
3560        RowBox[{"\[ImaginaryI]", " ",
3561         SuperscriptBox["MO0", "4"], " ",
3562         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3563         SubsuperscriptBox["g", "s", "2"], " ",
3564         SubscriptBox["o0", "axial"], " ",
3565         SubscriptBox["\[Delta]",
3566          RowBox[{
3567           SubscriptBox["\<\"a\"\>", "1"], ",",
3568           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3569         SubscriptBox["\[Epsilon]",
3570          RowBox[{
3571           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3572           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3573           "\[Beta]1"}]], " ",
3574         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3575        RowBox[{"5760", " ",
3576         SuperscriptBox["MT", "4"], " ",
3577         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3578       FractionBox[
3579        RowBox[{"\[ImaginaryI]", " ",
3580         SuperscriptBox["MO0", "6"], " ",
3581         SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
3582         SubsuperscriptBox["g", "s", "2"], " ",
3583         SubscriptBox["o0", "axial"], " ",
3584         SubscriptBox["\[Delta]",
3585          RowBox[{
3586           SubscriptBox["\<\"a\"\>", "1"], ",",
3587           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3588         SubscriptBox["\[Epsilon]",
3589          RowBox[{
3590           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3591           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3592           "\[Beta]1"}]], " ",
3593         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3594        RowBox[{"35840", " ",
3595         SuperscriptBox["MT", "6"], " ",
3596         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3597       FractionBox[
3598        RowBox[{"\[ImaginaryI]", " ",
3599         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3600         SubsuperscriptBox["g", "s", "2"], " ",
3601         SubscriptBox["o0", "axial"], " ",
3602         SubscriptBox["\[Delta]",
3603          RowBox[{
3604           SubscriptBox["\<\"a\"\>", "1"], ",",
3605           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3606         SubscriptBox["\[Epsilon]",
3607          RowBox[{
3608           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3609           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3610           "\[Delta]1"}]], " ",
3611         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3612        RowBox[{"64", " ",
3613         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3614       FractionBox[
3615        RowBox[{"\[ImaginaryI]", " ",
3616         SuperscriptBox["MO0", "2"], " ",
3617         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3618         SubsuperscriptBox["g", "s", "2"], " ",
3619         SubscriptBox["o0", "axial"], " ",
3620         SubscriptBox["\[Delta]",
3621          RowBox[{
3622           SubscriptBox["\<\"a\"\>", "1"], ",",
3623           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3624         SubscriptBox["\[Epsilon]",
3625          RowBox[{
3626           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3627           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3628           "\[Delta]1"}]], " ",
3629         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3630        RowBox[{"768", " ",
3631         SuperscriptBox["MT", "2"], " ",
3632         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3633       FractionBox[
3634        RowBox[{"\[ImaginaryI]", " ",
3635         SuperscriptBox["MO0", "4"], " ",
3636         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3637         SubsuperscriptBox["g", "s", "2"], " ",
3638         SubscriptBox["o0", "axial"], " ",
3639         SubscriptBox["\[Delta]",
3640          RowBox[{
3641           SubscriptBox["\<\"a\"\>", "1"], ",",
3642           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3643         SubscriptBox["\[Epsilon]",
3644          RowBox[{
3645           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3646           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3647           "\[Delta]1"}]], " ",
3648         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3649        RowBox[{"5760", " ",
3650         SuperscriptBox["MT", "4"], " ",
3651         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "+",
3652       FractionBox[
3653        RowBox[{"\[ImaginaryI]", " ",
3654         SuperscriptBox["MO0", "6"], " ",
3655         SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
3656         SubsuperscriptBox["g", "s", "2"], " ",
3657         SubscriptBox["o0", "axial"], " ",
3658         SubscriptBox["\[Delta]",
3659          RowBox[{
3660           SubscriptBox["\<\"a\"\>", "1"], ",",
3661           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3662         SubscriptBox["\[Epsilon]",
3663          RowBox[{
3664           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3665           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3666           "\[Delta]1"}]], " ",
3667         SubsuperscriptBox["\<\"p\"\>", "1", "\[Gamma]1"]}],
3668        RowBox[{"35840", " ",
3669         SuperscriptBox["MT", "6"], " ",
3670         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3671       FractionBox[
3672        RowBox[{"\[ImaginaryI]", " ",
3673         SubsuperscriptBox["g", "s", "2"], " ",
3674         SubscriptBox["o0", "axial"], " ",
3675         SubscriptBox["\[Epsilon]",
3676          RowBox[{
3677           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3678           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3679           "\[Delta]1"}]], " ",
3680         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3681         SubscriptBox["\[Delta]",
3682          RowBox[{
3683           SubscriptBox["\<\"a\"\>", "1"], ",",
3684           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3685         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3686        RowBox[{"64", " ",
3687         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3688       FractionBox[
3689        RowBox[{"\[ImaginaryI]", " ",
3690         SubsuperscriptBox["g", "s", "2"], " ",
3691         SubscriptBox["o0", "axial"], " ",
3692         SubscriptBox["\[Epsilon]",
3693          RowBox[{
3694           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3695           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3696           "\[Delta]1"}]], " ",
3697         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3698         SubscriptBox["\[Delta]",
3699          RowBox[{
3700           SubscriptBox["\<\"a\"\>", "1"], ",",
3701           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3702         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3703        RowBox[{"64", " ",
3704         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3705       FractionBox[
3706        RowBox[{"\[ImaginaryI]", " ",
3707         SubsuperscriptBox["g", "s", "2"], " ",
3708         SuperscriptBox["MO0", "2"], " ",
3709         SubscriptBox["o0", "axial"], " ",
3710         SubscriptBox["\[Epsilon]",
3711          RowBox[{
3712           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3713           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3714           "\[Delta]1"}]], " ",
3715         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3716         SubscriptBox["\[Delta]",
3717          RowBox[{
3718           SubscriptBox["\<\"a\"\>", "1"], ",",
3719           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3720         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3721        RowBox[{"768", " ",
3722         SuperscriptBox["MT", "2"], " ",
3723         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3724       FractionBox[
3725        RowBox[{"\[ImaginaryI]", " ",
3726         SubsuperscriptBox["g", "s", "2"], " ",
3727         SuperscriptBox["MO0", "2"], " ",
3728         SubscriptBox["o0", "axial"], " ",
3729         SubscriptBox["\[Epsilon]",
3730          RowBox[{
3731           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3732           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3733           "\[Delta]1"}]], " ",
3734         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3735         SubscriptBox["\[Delta]",
3736          RowBox[{
3737           SubscriptBox["\<\"a\"\>", "1"], ",",
3738           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3739         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3740        RowBox[{"768", " ",
3741         SuperscriptBox["MT", "2"], " ",
3742         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3743       FractionBox[
3744        RowBox[{"\[ImaginaryI]", " ",
3745         SubsuperscriptBox["g", "s", "2"], " ",
3746         SuperscriptBox["MO0", "4"], " ",
3747         SubscriptBox["o0", "axial"], " ",
3748         SubscriptBox["\[Epsilon]",
3749          RowBox[{
3750           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3751           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3752           "\[Delta]1"}]], " ",
3753         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3754         SubscriptBox["\[Delta]",
3755          RowBox[{
3756           SubscriptBox["\<\"a\"\>", "1"], ",",
3757           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3758         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3759        RowBox[{"5760", " ",
3760         SuperscriptBox["MT", "4"], " ",
3761         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3762       FractionBox[
3763        RowBox[{"\[ImaginaryI]", " ",
3764         SubsuperscriptBox["g", "s", "2"], " ",
3765         SuperscriptBox["MO0", "4"], " ",
3766         SubscriptBox["o0", "axial"], " ",
3767         SubscriptBox["\[Epsilon]",
3768          RowBox[{
3769           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3770           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3771           "\[Delta]1"}]], " ",
3772         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3773         SubscriptBox["\[Delta]",
3774          RowBox[{
3775           SubscriptBox["\<\"a\"\>", "1"], ",",
3776           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3777         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3778        RowBox[{"5760", " ",
3779         SuperscriptBox["MT", "4"], " ",
3780         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3781       FractionBox[
3782        RowBox[{"\[ImaginaryI]", " ",
3783         SubsuperscriptBox["g", "s", "2"], " ",
3784         SuperscriptBox["MO0", "6"], " ",
3785         SubscriptBox["o0", "axial"], " ",
3786         SubscriptBox["\[Epsilon]",
3787          RowBox[{
3788           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3789           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Alpha]1", ",",
3790           "\[Delta]1"}]], " ",
3791         SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
3792         SubscriptBox["\[Delta]",
3793          RowBox[{
3794           SubscriptBox["\<\"a\"\>", "1"], ",",
3795           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3796         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3797        RowBox[{"35840", " ",
3798         SuperscriptBox["MT", "6"], " ",
3799         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]], "-",
3800       FractionBox[
3801        RowBox[{"\[ImaginaryI]", " ",
3802         SubsuperscriptBox["g", "s", "2"], " ",
3803         SuperscriptBox["MO0", "6"], " ",
3804         SubscriptBox["o0", "axial"], " ",
3805         SubscriptBox["\[Epsilon]",
3806          RowBox[{
3807           SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3808           SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "\[Gamma]1", ",",
3809           "\[Delta]1"}]], " ",
3810         SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
3811         SubscriptBox["\[Delta]",
3812          RowBox[{
3813           SubscriptBox["\<\"a\"\>", "1"], ",",
3814           SubscriptBox["\<\"a\"\>", "2"]}]], " ",
3815         SubsuperscriptBox["\<\"p\"\>", "1", "\[Delta]1"]}],
3816        RowBox[{"35840", " ",
3817         SuperscriptBox["MT", "6"], " ",
3818         SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}]}
3819    },
3820    GridBoxAlignment->{
3821     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3822      "RowsIndexed" -> {}},
3823    GridBoxSpacings->{"Columns" -> {
3824        Offset[0.27999999999999997`], {
3825         Offset[0.7]},
3826        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3827        Offset[0.2], {
3828         Offset[0.4]},
3829        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
3830  TraditionalForm]], "Output",
3831 CellChangeTimes->{
3832  3.576846494930935*^9, 3.576909928176862*^9, 3.5769212022021008`*^9,
3833   3.576999439193357*^9, 3.577000563792943*^9, 3.5770013717075853`*^9,
3834   3.577001713117086*^9, {3.577435062028213*^9, 3.577435075518983*^9}}]
3835}, Open  ]]
3836}, Open  ]]
3837}, Closed]],
3838
3839Cell[CellGroupData[{
3840
3841Cell["Spin 1, color singlet", "Subtitle",
3842 CellChangeTimes->{{3.5763186596886253`*^9, 3.576318674225849*^9}, {
3843  3.576318938377852*^9, 3.576318939322701*^9}, {3.577011473122003*^9,
3844  3.577011473969521*^9}, {3.577168373072678*^9, 3.577168374000292*^9}, {
3845  3.578738682177874*^9, 3.578738688114422*^9}}],
3846
3847Cell[CellGroupData[{
3848
3849Cell[BoxData["S1"], "Input",
3850 CellChangeTimes->{{3.577434847304411*^9, 3.577434850680747*^9}, {
3851  3.5787386982923517`*^9, 3.5787386991404457`*^9}}],
3852
3853Cell[BoxData["S1"], "Output",
3854 CellChangeTimes->{3.577434851541717*^9, 3.578738699895171*^9}]
3855}, Open  ]],
3856
3857Cell["\<\
3858Introducing a spin-1 color-singlet coupled to all SM fermions with separate \
3859couplings for left and right particles.
3860
3861Parameters for each coupling are introduced (s1er, s1el, s1ur, s1ul, s1dr, \
3862s1dl for respectively leptons, up-type quars and down-type quarks, \
3863respectively right and left, as well as s1nu for neutrinos). The generations \
3864are grouped together.
3865
3866The width is externally fixed and not calculated.\
3867\>", "Text",
3868 CellChangeTimes->{{3.5768445062707157`*^9, 3.576844620532359*^9}, {
3869  3.5768446505800323`*^9, 3.576844668820506*^9}, {3.5768447014925127`*^9,
3870  3.57684471206841*^9}, {3.576845258132791*^9, 3.5768453245649548`*^9}, {
3871  3.576995784447092*^9, 3.576995811086684*^9}, {3.577175069154901*^9,
3872  3.577175072754261*^9}, {3.577434750743391*^9, 3.5774347689026213`*^9}, {
3873  3.577434834342506*^9, 3.5774348426303864`*^9}, {3.578303664966322*^9,
3874  3.578303690033896*^9}, {3.5787387036177883`*^9, 3.578738791073983*^9}, {
3875  3.578738902466176*^9, 3.578738921458044*^9}, {3.578918519589651*^9,
3876  3.578918675701339*^9}}],
3877
3878Cell[CellGroupData[{
3879
3880Cell["Coupling to charged leptons", "Subsubtitle",
3881 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
3882  3.578738807698063*^9, 3.5787388154418373`*^9}}],
3883
3884Cell[CellGroupData[{
3885
3886Cell[BoxData["LS1er"], "Input",
3887 CellChangeTimes->{{3.577174285330597*^9, 3.577174288012072*^9}, {
3888  3.5787387951246767`*^9, 3.578738820213571*^9}}],
3889
3890Cell[BoxData[
3891 FormBox[
3892  RowBox[{"-",
3893   FractionBox[
3894    RowBox[{"e", " ",
3895     SubscriptBox["s1", "er"], " ",
3896     SubscriptBox["S1", "mu"], " ",
3897     SubscriptBox["s", "w"], " ",
3898     RowBox[{
3899      OverscriptBox["lR", "\<\"-\"\>"], ".",
3900      SuperscriptBox["\[Gamma]", "mu"], ".", "lR"}]}],
3901    SubscriptBox["c", "w"]]}], TraditionalForm]], "Output",
3902 CellChangeTimes->{{3.578907162370669*^9, 3.5789071683082123`*^9}}]
3903}, Open  ]],
3904
3905Cell[CellGroupData[{
3906
3907Cell[BoxData["LS1el"], "Input",
3908 CellChangeTimes->{{3.5787388236055183`*^9, 3.578738827177387*^9}}],
3909
3910Cell[BoxData[
3911 FormBox[
3912  FractionBox[
3913   RowBox[{"e", " ",
3914    SubscriptBox["s1", "el"], " ",
3915    SubscriptBox["S1", "mu"], " ",
3916    RowBox[{"(",
3917     RowBox[{
3918      FractionBox["1", "2"], "-",
3919      SubsuperscriptBox["s", "w", "2"]}], ")"}], " ",
3920    SubscriptBox["LL",
3921     RowBox[{"sp2", ",", "2", ",", "ff"}]], " ",
3922    SubscriptBox[
3923     OverscriptBox["LL", "\<\"-\"\>"],
3924     RowBox[{"sp1", ",", "2", ",", "ff"}]], " ",
3925    SubsuperscriptBox["\[Gamma]",
3926     RowBox[{"sp1", ",", "sp2"}], "mu"]}],
3927   RowBox[{
3928    SubscriptBox["c", "w"], " ",
3929    SubscriptBox["s", "w"]}]], TraditionalForm]], "Output",
3930 CellChangeTimes->{
3931  3.578738827698213*^9, 3.578739033782812*^9, {3.578907173700502*^9,
3932   3.578907179273725*^9}}]
3933}, Open  ]]
3934}, Open  ]],
3935
3936Cell[CellGroupData[{
3937
3938Cell["Coupling to neutrinos", "Subsubtitle",
3939 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
3940  3.578738807698063*^9, 3.57873884429027*^9}}],
3941
3942Cell[CellGroupData[{
3943
3944Cell[BoxData["LS1nu"], "Input",
3945 CellChangeTimes->{{3.577174285330597*^9, 3.577174288012072*^9}, {
3946  3.5787387951246767`*^9, 3.578738848708346*^9}}],
3947
3948Cell[BoxData[
3949 FormBox[
3950  RowBox[{"-",
3951   FractionBox[
3952    RowBox[{"e", " ",
3953     SubscriptBox["S1", "mu"], " ",
3954     SubscriptBox["s1", "v"], " ",
3955     SubscriptBox["LL",
3956      RowBox[{"sp2", ",", "1", ",", "ff"}]], " ",
3957     SubscriptBox[
3958      OverscriptBox["LL", "\<\"-\"\>"],
3959      RowBox[{"sp1", ",", "1", ",", "ff"}]], " ",
3960     SubsuperscriptBox["\[Gamma]",
3961      RowBox[{"sp1", ",", "sp2"}], "mu"]}],
3962    RowBox[{"2", " ",
3963     SubscriptBox["c", "w"], " ",
3964     SubscriptBox["s", "w"]}]]}], TraditionalForm]], "Output",
3965 CellChangeTimes->{
3966  3.5771742894426117`*^9, 3.577174398739113*^9, 3.577184030293065*^9,
3967   3.57718407104521*^9, 3.5783073902037888`*^9, 3.578307479242729*^9, {
3968   3.578381266800846*^9, 3.578381271238566*^9}, {3.5787388210579453`*^9,
3969   3.57873884957964*^9}, 3.578739031267293*^9, {3.5789071816194553`*^9,
3970   3.5789071863485403`*^9}}]
3971}, Open  ]]
3972}, Open  ]],
3973
3974Cell[CellGroupData[{
3975
3976Cell["\<\
3977Coupling to up quarks (all generations)\
3978\>", "Subsubtitle",
3979 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
3980  3.578738807698063*^9, 3.5787388154418373`*^9}, {3.578738856785945*^9,
3981  3.578738878449788*^9}}],
3982
3983Cell[CellGroupData[{
3984
3985Cell[BoxData["LS1ur"], "Input",
3986 CellChangeTimes->{{3.577174285330597*^9, 3.577174288012072*^9}, {
3987  3.5787387951246767`*^9, 3.578738820213571*^9}, {3.578738881444738*^9,
3988  3.57873888280406*^9}}],
3989
3990Cell[BoxData[
3991 FormBox[
3992  FractionBox[
3993   RowBox[{"2", " ", "e", " ",
3994    SubscriptBox["S1", "mu"], " ",
3995    SubscriptBox["s", "w"], " ",
3996    SubscriptBox["s1", "ur"], " ",
3997    RowBox[{
3998     OverscriptBox["uR", "\<\"-\"\>"], ".",
3999     SuperscriptBox["\[Gamma]", "mu"], ".", "uR"}]}],
4000   RowBox[{"3", " ",
4001    SubscriptBox["c", "w"]}]], TraditionalForm]], "Output",
4002 CellChangeTimes->{
4003  3.5771742894426117`*^9, 3.577174398739113*^9, 3.577184030293065*^9,
4004   3.57718407104521*^9, 3.5783073902037888`*^9, 3.578307479242729*^9, {
4005   3.578381266800846*^9, 3.578381271238566*^9}, 3.5787388210579453`*^9,
4006   3.578738883585939*^9, 3.578739028053281*^9}]
4007}, Open  ]],
4008
4009Cell[CellGroupData[{
4010
4011Cell[BoxData["LS1ul"], "Input",
4012 CellChangeTimes->{{3.5787388236055183`*^9, 3.578738827177387*^9}, {
4013  3.5787388857325583`*^9, 3.578738887220152*^9}}],
4014
4015Cell[BoxData[
4016 FormBox[
4017  FractionBox[
4018   RowBox[{"e", " ",
4019    SubscriptBox["S1", "mu"], " ",
4020    RowBox[{"(",
4021     RowBox[{
4022      FractionBox[
4023       RowBox[{"2", " ",
4024        SubsuperscriptBox["s", "w", "2"]}], "3"], "-",
4025      FractionBox["1", "2"]}], ")"}], " ",
4026    SubscriptBox["s1", "ul"], " ",
4027    SubscriptBox["QL",
4028     RowBox[{"sp2", ",", "1", ",", "ff", ",", "cc"}]], " ",
4029    SubsuperscriptBox["\[Gamma]",
4030     RowBox[{"sp1", ",", "sp2"}], "mu"], " ",
4031    SubscriptBox[
4032     OverscriptBox["QL", "\<\"-\"\>"],
4033     RowBox[{"sp1", ",", "1", ",", "ff", ",", "cc"}]]}],
4034   RowBox[{
4035    SubscriptBox["c", "w"], " ",
4036    SubscriptBox["s", "w"]}]], TraditionalForm]], "Output",
4037 CellChangeTimes->{3.578738827698213*^9, 3.578738889058331*^9,
4038  3.57873902407981*^9}]
4039}, Open  ]]
4040}, Open  ]],
4041
4042Cell[CellGroupData[{
4043
4044Cell["\<\
4045Coupling to down quarks (all generations)\
4046\>", "Subsubtitle",
4047 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
4048  3.578738807698063*^9, 3.5787388154418373`*^9}, {3.578738856785945*^9,
4049  3.578738878449788*^9}, {3.5791742799435787`*^9, 3.57917428101548*^9}}],
4050
4051Cell[CellGroupData[{
4052
4053Cell[BoxData["LS1dr"], "Input",
4054 CellChangeTimes->{{3.577174285330597*^9, 3.577174288012072*^9}, {
4055  3.5787387951246767`*^9, 3.578738820213571*^9}, {3.578738881444738*^9,
4056  3.57873888280406*^9}, {3.5787389268533792`*^9, 3.578738931508564*^9}}],
4057
4058Cell[BoxData[
4059 FormBox[
4060  RowBox[{"-",
4061   FractionBox[
4062    RowBox[{"e", " ",
4063     SubscriptBox["s1", "dr"], " ",
4064     SubscriptBox["S1", "mu"], " ",
4065     SubscriptBox["s", "w"], " ",
4066     RowBox[{
4067      OverscriptBox["dR", "\<\"-\"\>"], ".",
4068      SuperscriptBox["\[Gamma]", "mu"], ".", "dR"}]}],
4069    RowBox[{"3", " ",
4070     SubscriptBox["c", "w"]}]]}], TraditionalForm]], "Output",
4071 CellChangeTimes->{
4072  3.5771742894426117`*^9, 3.577174398739113*^9, 3.577184030293065*^9,
4073   3.57718407104521*^9, 3.5783073902037888`*^9, 3.578307479242729*^9, {
4074   3.578381266800846*^9, 3.578381271238566*^9}, 3.5787388210579453`*^9,
4075   3.578738883585939*^9, 3.578738932209981*^9, 3.5787390207183657`*^9}]
4076}, Open  ]],
4077
4078Cell[CellGroupData[{
4079
4080Cell[BoxData["LS1dl"], "Input",
4081 CellChangeTimes->{{3.5787388236055183`*^9, 3.578738827177387*^9}, {
4082  3.5787388857325583`*^9, 3.578738887220152*^9}, {3.578738935364875*^9,
4083  3.578738935476595*^9}}],
4084
4085Cell[BoxData[
4086 FormBox[
4087  FractionBox[
4088   RowBox[{"e", " ",
4089    SubscriptBox["s1", "dl"], " ",
4090    SubscriptBox["S1", "mu"], " ",
4091    RowBox[{"(",
4092     RowBox[{
4093      FractionBox["1", "2"], "-",
4094      FractionBox[
4095       SubsuperscriptBox["s", "w", "2"], "3"]}], ")"}], " ",
4096    SubscriptBox["QL",
4097     RowBox[{"sp2", ",", "2", ",", "ff", ",", "cc"}]], " ",
4098    SubsuperscriptBox["\[Gamma]",
4099     RowBox[{"sp1", ",", "sp2"}], "mu"], " ",
4100    SubscriptBox[
4101     OverscriptBox["QL", "\<\"-\"\>"],
4102     RowBox[{"sp1", ",", "2", ",", "ff", ",", "cc"}]]}],
4103   RowBox[{
4104    SubscriptBox["c", "w"], " ",
4105    SubscriptBox["s", "w"]}]], TraditionalForm]], "Output",
4106 CellChangeTimes->{3.578738827698213*^9, 3.578738889058331*^9,
4107  3.578738936226221*^9, 3.5787390182001247`*^9}]
4108}, Open  ]]
4109}, Open  ]],
4110
4111Cell[CellGroupData[{
4112
4113Cell["Vertices", "Subsubtitle",
4114 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
4115  3.578738807698063*^9, 3.5787388154418373`*^9}, {3.578738856785945*^9,
4116  3.578738878449788*^9}, {3.578738961794153*^9, 3.578738964385903*^9}}],
4117
4118Cell[CellGroupData[{
4119
4120Cell[BoxData[
4121 RowBox[{"FeynmanRules", "[",
4122  RowBox[{"LS1", ",", " ",
4123   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]], "Input",
4124 CellChangeTimes->{{3.5771743109337482`*^9, 3.577174311380574*^9}, {
4125  3.578738967667603*^9, 3.57873896962145*^9}}],
4126
4127Cell[CellGroupData[{
4128
4129Cell[BoxData[
4130 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
4131  StripOnInput->False,
4132  LineColor->RGBColor[1, 0.5, 0],
4133  FrontFaceColor->RGBColor[1, 0.5, 0],
4134  BackFaceColor->RGBColor[1, 0.5, 0],
4135  GraphicsColor->RGBColor[1, 0.5, 0],
4136  FontWeight->Bold,
4137  FontColor->RGBColor[1, 0.5, 0]]], "Print",
4138 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
4139  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
4140  3.5789086447443447`*^9}],
4141
4142Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
4143 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
4144  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
4145  3.5789086448171663`*^9}],
4146
4147Cell[BoxData["\<\"Collecting the different structures that enter the \
4148vertex.\"\>"], "Print",
4149 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
4150  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
4151  3.578908644954262*^9}],
4152
4153Cell[BoxData[
4154 InterpretationBox[
4155  RowBox[{
4156  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
4157-> starting the computation: \"\>", "\[InvisibleSpace]",
4158   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
4159    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
4160   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
4161  SequenceForm[
4162  4, " possible non-zero vertices have been found -> starting the \
4163computation: ",
4164   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
4165  Editable->False]], "Print",
4166 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
4167  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
4168  3.5789086450355577`*^9}],
4169
4170Cell[BoxData[
4171 InterpretationBox[
4172  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
4173  SequenceForm[4, " vertices obtained."],
4174  Editable->False]], "Print",
4175 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
4176  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
4177  3.578908645169433*^9}]
4178}, Closed]],
4179
4180Cell[BoxData[
4181 FormBox[
4182  RowBox[{"(", "\[NoBreak]", GridBox[{
4183     {
4184      RowBox[{"(", "\[NoBreak]", GridBox[{
4185         {
4186          OverscriptBox["vl", "\<\"-\"\>"], "1"},
4187         {"vl", "2"},
4188         {"S1", "3"}
4189        },
4190        GridBoxAlignment->{
4191         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4192          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4193        GridBoxSpacings->{"Columns" -> {
4194            Offset[0.27999999999999997`], {
4195             Offset[0.7]},
4196            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4197          "Rows" -> {
4198            Offset[0.2], {
4199             Offset[0.4]},
4200            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4201      FractionBox[
4202       RowBox[{"\[ImaginaryI]", " ", "e", " ",
4203        SubscriptBox["s1", "v"], " ",
4204        SubscriptBox["\[Delta]",
4205         RowBox[{
4206          SubscriptBox["\<\"f\"\>", "1"], ",",
4207          SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4208        SubscriptBox[
4209         RowBox[{
4210          SuperscriptBox["\[Gamma]",
4211           SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4212          SubscriptBox["P", "\<\"-\"\>"]}],
4213         RowBox[{
4214          SubscriptBox["\<\"s\"\>", "1"], ",",
4215          SubscriptBox["\<\"s\"\>", "2"]}]]}],
4216       RowBox[{"2", " ",
4217        SubscriptBox["c", "w"], " ",
4218        SubscriptBox["s", "w"]}]]},
4219     {
4220      RowBox[{"(", "\[NoBreak]", GridBox[{
4221         {
4222          OverscriptBox["l", "\<\"-\"\>"], "1"},
4223         {"l", "2"},
4224         {"S1", "3"}
4225        },
4226        GridBoxAlignment->{
4227         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4228          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4229        GridBoxSpacings->{"Columns" -> {
4230            Offset[0.27999999999999997`], {
4231             Offset[0.7]},
4232            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4233          "Rows" -> {
4234            Offset[0.2], {
4235             Offset[0.4]},
4236            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4237      RowBox[{
4238       FractionBox[
4239        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4240         SubscriptBox["s", "w"], " ",
4241         SubscriptBox["s1", "el"], " ",
4242         SubscriptBox["\[Delta]",
4243          RowBox[{
4244           SubscriptBox["\<\"f\"\>", "1"], ",",
4245           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4246         SubscriptBox[
4247          RowBox[{
4248           SuperscriptBox["\[Gamma]",
4249            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4250           SubscriptBox["P", "\<\"-\"\>"]}],
4251          RowBox[{
4252           SubscriptBox["\<\"s\"\>", "1"], ",",
4253           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4254        SubscriptBox["c", "w"]], "-",
4255       FractionBox[
4256        RowBox[{"\[ImaginaryI]", " ", "e", " ",
4257         SubscriptBox["s1", "el"], " ",
4258         SubscriptBox["\[Delta]",
4259          RowBox[{
4260           SubscriptBox["\<\"f\"\>", "1"], ",",
4261           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4262         SubscriptBox[
4263          RowBox[{
4264           SuperscriptBox["\[Gamma]",
4265            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4266           SubscriptBox["P", "\<\"-\"\>"]}],
4267          RowBox[{
4268           SubscriptBox["\<\"s\"\>", "1"], ",",
4269           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4270        RowBox[{"2", " ",
4271         SubscriptBox["c", "w"], " ",
4272         SubscriptBox["s", "w"]}]], "+",
4273       FractionBox[
4274        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4275         SubscriptBox["s", "w"], " ",
4276         SubscriptBox["s1", "er"], " ",
4277         SubscriptBox["\[Delta]",
4278          RowBox[{
4279           SubscriptBox["\<\"f\"\>", "1"], ",",
4280           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4281         SubscriptBox[
4282          RowBox[{
4283           SuperscriptBox["\[Gamma]",
4284            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4285           SubscriptBox["P", "\<\"+\"\>"]}],
4286          RowBox[{
4287           SubscriptBox["\<\"s\"\>", "1"], ",",
4288           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4289        SubscriptBox["c", "w"]]}]},
4290     {
4291      RowBox[{"(", "\[NoBreak]", GridBox[{
4292         {
4293          OverscriptBox["uq", "\<\"-\"\>"], "1"},
4294         {"uq", "2"},
4295         {"S1", "3"}
4296        },
4297        GridBoxAlignment->{
4298         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4299          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4300        GridBoxSpacings->{"Columns" -> {
4301            Offset[0.27999999999999997`], {
4302             Offset[0.7]},
4303            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4304          "Rows" -> {
4305            Offset[0.2], {
4306             Offset[0.4]},
4307            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4308      RowBox[{
4309       FractionBox[
4310        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4311         SubscriptBox["s1", "ul"], " ",
4312         SubscriptBox["\[Delta]",
4313          RowBox[{
4314           SubscriptBox["\<\"f\"\>", "1"], ",",
4315           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4316         SubscriptBox["\[Delta]",
4317          RowBox[{
4318           SubscriptBox["\<\"m\"\>", "1"], ",",
4319           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4320         SubscriptBox[
4321          RowBox[{
4322           SuperscriptBox["\[Gamma]",
4323            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4324           SubscriptBox["P", "\<\"-\"\>"]}],
4325          RowBox[{
4326           SubscriptBox["\<\"s\"\>", "1"], ",",
4327           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4328        RowBox[{"2", " ",
4329         SubscriptBox["c", "w"], " ",
4330         SubscriptBox["s", "w"]}]], "-",
4331       FractionBox[
4332        RowBox[{"2", " ", "\[ImaginaryI]", " ", "e", " ",
4333         SubscriptBox["s1", "ul"], " ",
4334         SubscriptBox["s", "w"], " ",
4335         SubscriptBox["\[Delta]",
4336          RowBox[{
4337           SubscriptBox["\<\"m\"\>", "1"], ",",
4338           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4339         SubscriptBox["\[Delta]",
4340          RowBox[{
4341           SubscriptBox["\<\"f\"\>", "1"], ",",
4342           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4343         SubscriptBox[
4344          RowBox[{
4345           SuperscriptBox["\[Gamma]",
4346            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4347           SubscriptBox["P", "\<\"-\"\>"]}],
4348          RowBox[{
4349           SubscriptBox["\<\"s\"\>", "1"], ",",
4350           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4351        RowBox[{"3", " ",
4352         SubscriptBox["c", "w"]}]], "-",
4353       FractionBox[
4354        RowBox[{"2", " ", "\[ImaginaryI]", " ", "e", " ",
4355         SubscriptBox["s1", "ur"], " ",
4356         SubscriptBox["s", "w"], " ",
4357         SubscriptBox["\[Delta]",
4358          RowBox[{
4359           SubscriptBox["\<\"m\"\>", "1"], ",",
4360           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4361         SubscriptBox["\[Delta]",
4362          RowBox[{
4363           SubscriptBox["\<\"f\"\>", "1"], ",",
4364           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4365         SubscriptBox[
4366          RowBox[{
4367           SuperscriptBox["\[Gamma]",
4368            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4369           SubscriptBox["P", "\<\"+\"\>"]}],
4370          RowBox[{
4371           SubscriptBox["\<\"s\"\>", "1"], ",",
4372           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4373        RowBox[{"3", " ",
4374         SubscriptBox["c", "w"]}]]}]},
4375     {
4376      RowBox[{"(", "\[NoBreak]", GridBox[{
4377         {
4378          OverscriptBox["dq", "\<\"-\"\>"], "1"},
4379         {"dq", "2"},
4380         {"S1", "3"}
4381        },
4382        GridBoxAlignment->{
4383         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4384          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4385        GridBoxSpacings->{"Columns" -> {
4386            Offset[0.27999999999999997`], {
4387             Offset[0.7]},
4388            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4389          "Rows" -> {
4390            Offset[0.2], {
4391             Offset[0.4]},
4392            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4393      RowBox[{
4394       FractionBox[
4395        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4396         SubscriptBox["s", "w"], " ",
4397         SubscriptBox["s1", "dl"], " ",
4398         SubscriptBox["\[Delta]",
4399          RowBox[{
4400           SubscriptBox["\<\"f\"\>", "1"], ",",
4401           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4402         SubscriptBox["\[Delta]",
4403          RowBox[{
4404           SubscriptBox["\<\"m\"\>", "1"], ",",
4405           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4406         SubscriptBox[
4407          RowBox[{
4408           SuperscriptBox["\[Gamma]",
4409            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4410           SubscriptBox["P", "\<\"-\"\>"]}],
4411          RowBox[{
4412           SubscriptBox["\<\"s\"\>", "1"], ",",
4413           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4414        RowBox[{"3", " ",
4415         SubscriptBox["c", "w"]}]], "-",
4416       FractionBox[
4417        RowBox[{"\[ImaginaryI]", " ", "e", " ",
4418         SubscriptBox["s1", "dl"], " ",
4419         SubscriptBox["\[Delta]",
4420          RowBox[{
4421           SubscriptBox["\<\"m\"\>", "1"], ",",
4422           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4423         SubscriptBox["\[Delta]",
4424          RowBox[{
4425           SubscriptBox["\<\"f\"\>", "1"], ",",
4426           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4427         SubscriptBox[
4428          RowBox[{
4429           SuperscriptBox["\[Gamma]",
4430            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4431           SubscriptBox["P", "\<\"-\"\>"]}],
4432          RowBox[{
4433           SubscriptBox["\<\"s\"\>", "1"], ",",
4434           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4435        RowBox[{"2", " ",
4436         SubscriptBox["c", "w"], " ",
4437         SubscriptBox["s", "w"]}]], "+",
4438       FractionBox[
4439        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4440         SubscriptBox["s", "w"], " ",
4441         SubscriptBox["s1", "dr"], " ",
4442         SubscriptBox["\[Delta]",
4443          RowBox[{
4444           SubscriptBox["\<\"f\"\>", "1"], ",",
4445           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4446         SubscriptBox["\[Delta]",
4447          RowBox[{
4448           SubscriptBox["\<\"m\"\>", "1"], ",",
4449           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4450         SubscriptBox[
4451          RowBox[{
4452           SuperscriptBox["\[Gamma]",
4453            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4454           SubscriptBox["P", "\<\"+\"\>"]}],
4455          RowBox[{
4456           SubscriptBox["\<\"s\"\>", "1"], ",",
4457           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4458        RowBox[{"3", " ",
4459         SubscriptBox["c", "w"]}]]}]}
4460    },
4461    GridBoxAlignment->{
4462     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
4463      "RowsIndexed" -> {}},
4464    GridBoxSpacings->{"Columns" -> {
4465        Offset[0.27999999999999997`], {
4466         Offset[0.7]},
4467        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
4468        Offset[0.2], {
4469         Offset[0.4]},
4470        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4471  TraditionalForm]], "Output",
4472 CellChangeTimes->{
4473  3.577174312798154*^9, 3.577184078260206*^9, {3.57830739701258*^9,
4474   3.578307402611945*^9}, 3.578738972071248*^9, 3.578739014204702*^9,
4475   3.5789071935279284`*^9, 3.578908537819581*^9, {3.5789086452487926`*^9,
4476   3.5789086498895597`*^9}}]
4477}, Open  ]],
4478
4479Cell["\<\
4480For comparison here are the Z vertices (given that 1/sin+1/cos=1/(sin*cos) \
4481they are the same):\
4482\>", "Text",
4483 CellChangeTimes->{{3.57890854226236*^9, 3.578908612339438*^9}}],
4484
4485Cell[CellGroupData[{
4486
4487Cell[BoxData[
4488 RowBox[{"FeynmanRules", "[",
4489  RowBox[{"LFermions", ",",
4490   RowBox[{"MaxParticles", "\[Rule]", "3"}], ",",
4491   RowBox[{"Contains", "\[Rule]",
4492    RowBox[{"{", "Z", "}"}]}], ",",
4493   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]], "Input",
4494 CellChangeTimes->{{3.578908573128215*^9, 3.578908574966208*^9}}],
4495
4496Cell[CellGroupData[{
4497
4498Cell[BoxData[
4499 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
4500  StripOnInput->False,
4501  LineColor->RGBColor[1, 0.5, 0],
4502  FrontFaceColor->RGBColor[1, 0.5, 0],
4503  BackFaceColor->RGBColor[1, 0.5, 0],
4504  GraphicsColor->RGBColor[1, 0.5, 0],
4505  FontWeight->Bold,
4506  FontColor->RGBColor[1, 0.5, 0]]], "Print",
4507 CellChangeTimes->{3.578908559772344*^9, 3.5789086589922028`*^9}],
4508
4509Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
4510 CellChangeTimes->{3.578908559772344*^9, 3.578908658993412*^9}],
4511
4512Cell[BoxData[
4513 InterpretationBox[
4514  RowBox[{"\<\"Expansion of indices distributed over \"\>",
4515   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
4516  SequenceForm["Expansion of indices distributed over ", 2, " kernels."],
4517  Editable->False]], "Print",
4518 CellChangeTimes->{3.578908559772344*^9, 3.5789086589959927`*^9}],
4519
4520Cell[BoxData["\<\"Collecting the different structures that enter the \
4521vertex.\"\>"], "Print",
4522 CellChangeTimes->{3.578908559772344*^9, 3.578908659822255*^9}],
4523
4524Cell[BoxData[
4525 InterpretationBox[
4526  RowBox[{
4527  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
4528-> starting the computation: \"\>", "\[InvisibleSpace]",
4529   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
4530    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
4531   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
4532  SequenceForm[
4533  4, " possible non-zero vertices have been found -> starting the \
4534computation: ",
4535   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
4536  Editable->False]], "Print",
4537 CellChangeTimes->{3.578908559772344*^9, 3.578908659827345*^9}],
4538
4539Cell[BoxData[
4540 InterpretationBox[
4541  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
4542  SequenceForm[4, " vertices obtained."],
4543  Editable->False]], "Print",
4544 CellChangeTimes->{3.578908559772344*^9, 3.578908660047572*^9}]
4545}, Closed]],
4546
4547Cell[BoxData[
4548 FormBox[
4549  RowBox[{"(", "\[NoBreak]", GridBox[{
4550     {
4551      RowBox[{"(", "\[NoBreak]", GridBox[{
4552         {
4553          OverscriptBox["vl", "\<\"-\"\>"], "1"},
4554         {"vl", "2"},
4555         {"Z", "3"}
4556        },
4557        GridBoxAlignment->{
4558         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4559          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4560        GridBoxSpacings->{"Columns" -> {
4561            Offset[0.27999999999999997`], {
4562             Offset[0.7]},
4563            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4564          "Rows" -> {
4565            Offset[0.2], {
4566             Offset[0.4]},
4567            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4568      RowBox[{
4569       FractionBox[
4570        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4571         SubscriptBox["s", "w"], " ",
4572         SubscriptBox["\[Delta]",
4573          RowBox[{
4574           SubscriptBox["\<\"f\"\>", "1"], ",",
4575           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4576         SubscriptBox[
4577          RowBox[{
4578           SuperscriptBox["\[Gamma]",
4579            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4580           SubscriptBox["P", "\<\"-\"\>"]}],
4581          RowBox[{
4582           SubscriptBox["\<\"s\"\>", "1"], ",",
4583           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4584        RowBox[{"2", " ",
4585         SubscriptBox["c", "w"]}]], "+",
4586       FractionBox[
4587        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4588         SubscriptBox["c", "w"], " ",
4589         SubscriptBox["\[Delta]",
4590          RowBox[{
4591           SubscriptBox["\<\"f\"\>", "1"], ",",
4592           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4593         SubscriptBox[
4594          RowBox[{
4595           SuperscriptBox["\[Gamma]",
4596            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4597           SubscriptBox["P", "\<\"-\"\>"]}],
4598          RowBox[{
4599           SubscriptBox["\<\"s\"\>", "1"], ",",
4600           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4601        RowBox[{"2", " ",
4602         SubscriptBox["s", "w"]}]]}]},
4603     {
4604      RowBox[{"(", "\[NoBreak]", GridBox[{
4605         {
4606          OverscriptBox["l", "\<\"-\"\>"], "1"},
4607         {"l", "2"},
4608         {"Z", "3"}
4609        },
4610        GridBoxAlignment->{
4611         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4612          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4613        GridBoxSpacings->{"Columns" -> {
4614            Offset[0.27999999999999997`], {
4615             Offset[0.7]},
4616            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4617          "Rows" -> {
4618            Offset[0.2], {
4619             Offset[0.4]},
4620            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4621      RowBox[{
4622       FractionBox[
4623        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4624         SubscriptBox["s", "w"], " ",
4625         SubscriptBox["\[Delta]",
4626          RowBox[{
4627           SubscriptBox["\<\"f\"\>", "1"], ",",
4628           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4629         SubscriptBox[
4630          RowBox[{
4631           SuperscriptBox["\[Gamma]",
4632            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4633           SubscriptBox["P", "\<\"-\"\>"]}],
4634          RowBox[{
4635           SubscriptBox["\<\"s\"\>", "1"], ",",
4636           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4637        RowBox[{"2", " ",
4638         SubscriptBox["c", "w"]}]], "-",
4639       FractionBox[
4640        RowBox[{"\[ImaginaryI]", " ",
4641         SubscriptBox["c", "w"], " ", "e", " ",
4642         SubscriptBox["\[Delta]",
4643          RowBox[{
4644           SubscriptBox["\<\"f\"\>", "1"], ",",
4645           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4646         SubscriptBox[
4647          RowBox[{
4648           SuperscriptBox["\[Gamma]",
4649            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4650           SubscriptBox["P", "\<\"-\"\>"]}],
4651          RowBox[{
4652           SubscriptBox["\<\"s\"\>", "1"], ",",
4653           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4654        RowBox[{"2", " ",
4655         SubscriptBox["s", "w"]}]], "+",
4656       FractionBox[
4657        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4658         SubscriptBox["s", "w"], " ",
4659         SubscriptBox["\[Delta]",
4660          RowBox[{
4661           SubscriptBox["\<\"f\"\>", "1"], ",",
4662           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4663         SubscriptBox[
4664          RowBox[{
4665           SuperscriptBox["\[Gamma]",
4666            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4667           SubscriptBox["P", "\<\"+\"\>"]}],
4668          RowBox[{
4669           SubscriptBox["\<\"s\"\>", "1"], ",",
4670           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4671        SubscriptBox["c", "w"]]}]},
4672     {
4673      RowBox[{"(", "\[NoBreak]", GridBox[{
4674         {
4675          OverscriptBox["uq", "\<\"-\"\>"], "1"},
4676         {"uq", "2"},
4677         {"Z", "3"}
4678        },
4679        GridBoxAlignment->{
4680         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4681          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4682        GridBoxSpacings->{"Columns" -> {
4683            Offset[0.27999999999999997`], {
4684             Offset[0.7]},
4685            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4686          "Rows" -> {
4687            Offset[0.2], {
4688             Offset[0.4]},
4689            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4690      RowBox[{
4691       FractionBox[
4692        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4693         SubscriptBox["c", "w"], " ",
4694         SubscriptBox["\[Delta]",
4695          RowBox[{
4696           SubscriptBox["\<\"f\"\>", "1"], ",",
4697           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4698         SubscriptBox["\[Delta]",
4699          RowBox[{
4700           SubscriptBox["\<\"m\"\>", "1"], ",",
4701           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4702         SubscriptBox[
4703          RowBox[{
4704           SuperscriptBox["\[Gamma]",
4705            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4706           SubscriptBox["P", "\<\"-\"\>"]}],
4707          RowBox[{
4708           SubscriptBox["\<\"s\"\>", "1"], ",",
4709           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4710        RowBox[{"2", " ",
4711         SubscriptBox["s", "w"]}]], "-",
4712       FractionBox[
4713        RowBox[{"\[ImaginaryI]", " ", "e", " ",
4714         SubscriptBox["s", "w"], " ",
4715         SubscriptBox["\[Delta]",
4716          RowBox[{
4717           SubscriptBox["\<\"m\"\>", "1"], ",",
4718           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4719         SubscriptBox["\[Delta]",
4720          RowBox[{
4721           SubscriptBox["\<\"f\"\>", "1"], ",",
4722           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4723         SubscriptBox[
4724          RowBox[{
4725           SuperscriptBox["\[Gamma]",
4726            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4727           SubscriptBox["P", "\<\"-\"\>"]}],
4728          RowBox[{
4729           SubscriptBox["\<\"s\"\>", "1"], ",",
4730           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4731        RowBox[{"6", " ",
4732         SubscriptBox["c", "w"]}]], "-",
4733       FractionBox[
4734        RowBox[{"2", " ", "\[ImaginaryI]", " ", "e", " ",
4735         SubscriptBox["s", "w"], " ",
4736         SubscriptBox["\[Delta]",
4737          RowBox[{
4738           SubscriptBox["\<\"m\"\>", "1"], ",",
4739           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4740         SubscriptBox["\[Delta]",
4741          RowBox[{
4742           SubscriptBox["\<\"f\"\>", "1"], ",",
4743           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4744         SubscriptBox[
4745          RowBox[{
4746           SuperscriptBox["\[Gamma]",
4747            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4748           SubscriptBox["P", "\<\"+\"\>"]}],
4749          RowBox[{
4750           SubscriptBox["\<\"s\"\>", "1"], ",",
4751           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4752        RowBox[{"3", " ",
4753         SubscriptBox["c", "w"]}]]}]},
4754     {
4755      RowBox[{"(", "\[NoBreak]", GridBox[{
4756         {
4757          OverscriptBox["dq", "\<\"-\"\>"], "1"},
4758         {"dq", "2"},
4759         {"Z", "3"}
4760        },
4761        GridBoxAlignment->{
4762         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
4763          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
4764        GridBoxSpacings->{"Columns" -> {
4765            Offset[0.27999999999999997`], {
4766             Offset[0.7]},
4767            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
4768          "Rows" -> {
4769            Offset[0.2], {
4770             Offset[0.4]},
4771            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4772      RowBox[{
4773       RowBox[{"-",
4774        FractionBox[
4775         RowBox[{"\[ImaginaryI]", " ", "e", " ",
4776          SubscriptBox["s", "w"], " ",
4777          SubscriptBox["\[Delta]",
4778           RowBox[{
4779            SubscriptBox["\<\"m\"\>", "1"], ",",
4780            SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4781          SubscriptBox["\[Delta]",
4782           RowBox[{
4783            SubscriptBox["\<\"f\"\>", "1"], ",",
4784            SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4785          SubscriptBox[
4786           RowBox[{
4787            SuperscriptBox["\[Gamma]",
4788             SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4789            SubscriptBox["P", "\<\"-\"\>"]}],
4790           RowBox[{
4791            SubscriptBox["\<\"s\"\>", "1"], ",",
4792            SubscriptBox["\<\"s\"\>", "2"]}]]}],
4793         RowBox[{"6", " ",
4794          SubscriptBox["c", "w"]}]]}], "-",
4795       FractionBox[
4796        RowBox[{"\[ImaginaryI]", " ",
4797         SubscriptBox["c", "w"], " ", "e", " ",
4798         SubscriptBox["\[Delta]",
4799          RowBox[{
4800           SubscriptBox["\<\"m\"\>", "1"], ",",
4801           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4802         SubscriptBox["\[Delta]",
4803          RowBox[{
4804           SubscriptBox["\<\"f\"\>", "1"], ",",
4805           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4806         SubscriptBox[
4807          RowBox[{
4808           SuperscriptBox["\[Gamma]",
4809            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4810           SubscriptBox["P", "\<\"-\"\>"]}],
4811          RowBox[{
4812           SubscriptBox["\<\"s\"\>", "1"], ",",
4813           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4814        RowBox[{"2", " ",
4815         SubscriptBox["s", "w"]}]], "+",
4816       FractionBox[
4817        RowBox[{"e", " ", "\[ImaginaryI]", " ",
4818         SubscriptBox["s", "w"], " ",
4819         SubscriptBox["\[Delta]",
4820          RowBox[{
4821           SubscriptBox["\<\"f\"\>", "1"], ",",
4822           SubscriptBox["\<\"f\"\>", "2"]}]], " ",
4823         SubscriptBox["\[Delta]",
4824          RowBox[{
4825           SubscriptBox["\<\"m\"\>", "1"], ",",
4826           SubscriptBox["\<\"m\"\>", "2"]}]], " ",
4827         SubscriptBox[
4828          RowBox[{
4829           SuperscriptBox["\[Gamma]",
4830            SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
4831           SubscriptBox["P", "\<\"+\"\>"]}],
4832          RowBox[{
4833           SubscriptBox["\<\"s\"\>", "1"], ",",
4834           SubscriptBox["\<\"s\"\>", "2"]}]]}],
4835        RowBox[{"3", " ",
4836         SubscriptBox["c", "w"]}]]}]}
4837    },
4838    GridBoxAlignment->{
4839     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
4840      "RowsIndexed" -> {}},
4841    GridBoxSpacings->{"Columns" -> {
4842        Offset[0.27999999999999997`], {
4843         Offset[0.7]},
4844        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
4845        Offset[0.2], {
4846         Offset[0.4]},
4847        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
4848  TraditionalForm]], "Output",
4849 CellChangeTimes->{{3.5789085609322023`*^9, 3.578908566235079*^9}, {
4850  3.578908660120668*^9, 3.578908667077943*^9}}]
4851}, Open  ]]
4852}, Open  ]]
4853}, Closed]],
4854
4855Cell[CellGroupData[{
4856
4857Cell["Spin 1, color octet", "Subtitle",
4858 CellChangeTimes->{{3.5763186596886253`*^9, 3.576318674225849*^9}, {
4859  3.576318938377852*^9, 3.576318939322701*^9}, {3.577011473122003*^9,
4860  3.577011473969521*^9}, {3.577168373072678*^9, 3.577168374000292*^9}, {
4861  3.578738682177874*^9, 3.578738688114422*^9}, {3.579001155398176*^9,
4862  3.5790011561013927`*^9}}],
4863
4864Cell[CellGroupData[{
4865
4866Cell[BoxData["O1"], "Input",
4867 CellChangeTimes->{{3.577434847304411*^9, 3.577434850680747*^9}, {
4868  3.5787386982923517`*^9, 3.5787386991404457`*^9}, {3.5790011339118147`*^9,
4869  3.579001134983529*^9}}],
4870
4871Cell[BoxData["O1"], "Output",
4872 CellChangeTimes->{3.577434851541717*^9, 3.578738699895171*^9,
4873  3.579001135797367*^9}]
4874}, Open  ]],
4875
4876Cell["\<\
4877Introducing a spin-1 color-octet coupled to all SM quarks with separate \
4878couplings for left and right particles.
4879
4880Parameters for each coupling are introduced (s1er, s1el, s1ur, s1ul, s1dr, \
4881s1dl for respectively leptons, up-type quars and down-type quarks, \
4882respectively right and left, as well as s1nu for neutrinos). The generations \
4883are grouped together.\
4884\>", "Text",
4885 CellChangeTimes->{{3.5768445062707157`*^9, 3.576844620532359*^9}, {
4886  3.5768446505800323`*^9, 3.576844668820506*^9}, {3.5768447014925127`*^9,
4887  3.57684471206841*^9}, {3.576845258132791*^9, 3.5768453245649548`*^9}, {
4888  3.576995784447092*^9, 3.576995811086684*^9}, {3.577175069154901*^9,
4889  3.577175072754261*^9}, {3.577434750743391*^9, 3.5774347689026213`*^9}, {
4890  3.577434834342506*^9, 3.5774348426303864`*^9}, {3.578303664966322*^9,
4891  3.578303690033896*^9}, {3.5787387036177883`*^9, 3.578738791073983*^9}, {
4892  3.578738902466176*^9, 3.578738921458044*^9}, {3.578918519589651*^9,
4893  3.578918675701339*^9}, {3.579001130501616*^9, 3.579001152453539*^9}}],
4894
4895Cell[CellGroupData[{
4896
4897Cell["Coupling to up quarks (all generations)", "Subsubtitle",
4898 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
4899  3.578738807698063*^9, 3.5787388154418373`*^9}, {3.578738856785945*^9,
4900  3.578738878449788*^9}}],
4901
4902Cell[CellGroupData[{
4903
4904Cell[BoxData["LO1ur"], "Input",
4905 CellChangeTimes->{{3.577174285330597*^9, 3.577174288012072*^9}, {
4906  3.5787387951246767`*^9, 3.578738820213571*^9}, {3.578738881444738*^9,
4907  3.57873888280406*^9}, {3.57900110115941*^9, 3.5790011015276537`*^9}}],
4908
4909Cell[BoxData[
4910 FormBox[
4911  RowBox[{
4912   SubscriptBox["g", "s"], " ",
4913   SubscriptBox["o1", "ur"], " ",
4914   SubscriptBox["O1",
4915    RowBox[{"mu", ",", "a"}]], " ",
4916   RowBox[{
4917    OverscriptBox["uR", "\<\"-\"\>"], ".",
4918    SuperscriptBox["T", "a"], ".",
4919    SuperscriptBox["\[Gamma]", "mu"], ".", "uR"}]}],
4920  TraditionalForm]], "Output",
4921 CellChangeTimes->{
4922  3.5771742894426117`*^9, 3.577174398739113*^9, 3.577184030293065*^9,
4923   3.57718407104521*^9, 3.5783073902037888`*^9, 3.578307479242729*^9, {
4924   3.578381266800846*^9, 3.578381271238566*^9}, 3.5787388210579453`*^9,
4925   3.578738883585939*^9, 3.578739028053281*^9, {3.579001109605723*^9,
4926   3.579001114380506*^9}, {3.579608647470107*^9, 3.5796086527514277`*^9}}]
4927}, Open  ]],
4928
4929Cell[CellGroupData[{
4930
4931Cell[BoxData["LO1ul"], "Input",
4932 CellChangeTimes->{{3.5787388236055183`*^9, 3.578738827177387*^9}, {
4933  3.5787388857325583`*^9, 3.578738887220152*^9}, {3.5790011058478937`*^9,
4934  3.5790011062798977`*^9}}],
4935
4936Cell[BoxData[
4937 FormBox[
4938  RowBox[{
4939   SubscriptBox["g", "s"], " ",
4940   SubscriptBox["o1", "ul"], " ",
4941   SubscriptBox["O1",
4942    RowBox[{"mu", ",", "a"}]], " ",
4943   SubsuperscriptBox["T",
4944    RowBox[{"cc1", ",", "cc2"}], "a"], " ",
4945   SubscriptBox["QL",
4946    RowBox[{"sp2", ",", "1", ",", "ff", ",", "cc2"}]], " ",
4947   SubsuperscriptBox["\[Gamma]",
4948    RowBox[{"sp1", ",", "sp2"}], "mu"], " ",
4949   SubscriptBox[
4950    OverscriptBox["QL", "\<\"-\"\>"],
4951    RowBox[{"sp1", ",", "1", ",", "ff", ",", "cc1"}]]}],
4952  TraditionalForm]], "Output",
4953 CellChangeTimes->{
4954  3.578738827698213*^9, 3.578738889058331*^9, 3.57873902407981*^9, {
4955   3.579001107285508*^9, 3.579001117094657*^9}, {3.5796086488937893`*^9,
4956   3.579608656145741*^9}}]
4957}, Open  ]]
4958}, Open  ]],
4959
4960Cell[CellGroupData[{
4961
4962Cell["\<\
4963Coupling to down quarks (all generations)\
4964\>", "Subsubtitle",
4965 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
4966  3.578738807698063*^9, 3.5787388154418373`*^9}, {3.578738856785945*^9,
4967  3.578738878449788*^9}, {3.579174270536014*^9, 3.5791742717834673`*^9}}],
4968
4969Cell[CellGroupData[{
4970
4971Cell[BoxData["LO1dr"], "Input",
4972 CellChangeTimes->{{3.577174285330597*^9, 3.577174288012072*^9}, {
4973  3.5787387951246767`*^9, 3.578738820213571*^9}, {3.578738881444738*^9,
4974  3.57873888280406*^9}, {3.5787389268533792`*^9, 3.578738931508564*^9}, {
4975  3.579001082214304*^9, 3.579001084183481*^9}}],
4976
4977Cell[BoxData[
4978 FormBox[
4979  RowBox[{
4980   SubscriptBox["o1", "dr"], " ",
4981   SubscriptBox["g", "s"], " ",
4982   SubscriptBox["O1",
4983    RowBox[{"mu", ",", "a"}]], " ",
4984   RowBox[{
4985    OverscriptBox["dR", "\<\"-\"\>"], ".",
4986    SuperscriptBox["T", "a"], ".",
4987    SuperscriptBox["\[Gamma]", "mu"], ".", "dR"}]}],
4988  TraditionalForm]], "Output",
4989 CellChangeTimes->{
4990  3.5771742894426117`*^9, 3.577174398739113*^9, 3.577184030293065*^9,
4991   3.57718407104521*^9, 3.5783073902037888`*^9, 3.578307479242729*^9, {
4992   3.578381266800846*^9, 3.578381271238566*^9}, 3.5787388210579453`*^9,
4993   3.578738883585939*^9, 3.578738932209981*^9, 3.5787390207183657`*^9, {
4994   3.579001085061694*^9, 3.579001093102803*^9}, {3.5796086592292833`*^9,
4995   3.579608664081092*^9}}]
4996}, Open  ]],
4997
4998Cell[CellGroupData[{
4999
5000Cell[BoxData["LO1dl"], "Input",
5001 CellChangeTimes->{{3.5787388236055183`*^9, 3.578738827177387*^9}, {
5002  3.5787388857325583`*^9, 3.578738887220152*^9}, {3.578738935364875*^9,
5003  3.578738935476595*^9}, {3.579001086824051*^9, 3.579001087352049*^9}}],
5004
5005Cell[BoxData[
5006 FormBox[
5007  RowBox[{
5008   SubscriptBox["o1", "dl"], " ",
5009   SubscriptBox["g", "s"], " ",
5010   SubscriptBox["O1",
5011    RowBox[{"mu", ",", "a"}]], " ",
5012   SubsuperscriptBox["T",
5013    RowBox[{"cc1", ",", "cc2"}], "a"], " ",
5014   SubscriptBox["QL",
5015    RowBox[{"sp2", ",", "2", ",", "ff", ",", "cc2"}]], " ",
5016   SubsuperscriptBox["\[Gamma]",
5017    RowBox[{"sp1", ",", "sp2"}], "mu"], " ",
5018   SubscriptBox[
5019    OverscriptBox["QL", "\<\"-\"\>"],
5020    RowBox[{"sp1", ",", "2", ",", "ff", ",", "cc1"}]]}],
5021  TraditionalForm]], "Output",
5022 CellChangeTimes->{
5023  3.578738827698213*^9, 3.578738889058331*^9, 3.578738936226221*^9,
5024   3.5787390182001247`*^9, {3.579001088133975*^9, 3.579001096689641*^9}, {
5025   3.579608660189313*^9, 3.579608667434236*^9}}]
5026}, Open  ]]
5027}, Open  ]],
5028
5029Cell[CellGroupData[{
5030
5031Cell["Vertices", "Subsubtitle",
5032 CellChangeTimes->{{3.576318687232041*^9, 3.576318690406094*^9}, {
5033  3.578738807698063*^9, 3.5787388154418373`*^9}, {3.578738856785945*^9,
5034  3.578738878449788*^9}, {3.578738961794153*^9, 3.578738964385903*^9}}],
5035
5036Cell[CellGroupData[{
5037
5038Cell[BoxData[
5039 RowBox[{"FeynmanRules", "[",
5040  RowBox[{"LO1", ",", " ",
5041   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]], "Input",
5042 CellChangeTimes->{{3.5771743109337482`*^9, 3.577174311380574*^9}, {
5043  3.578738967667603*^9, 3.57873896962145*^9}, {3.579001035226943*^9,
5044  3.579001035736705*^9}}],
5045
5046Cell[CellGroupData[{
5047
5048Cell[BoxData[
5049 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
5050  StripOnInput->False,
5051  LineColor->RGBColor[1, 0.5, 0],
5052  FrontFaceColor->RGBColor[1, 0.5, 0],
5053  BackFaceColor->RGBColor[1, 0.5, 0],
5054  GraphicsColor->RGBColor[1, 0.5, 0],
5055  FontWeight->Bold,
5056  FontColor->RGBColor[1, 0.5, 0]]], "Print",
5057 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
5058  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
5059  3.5789086447443447`*^9, 3.5790010367026663`*^9, 3.579608671738364*^9}],
5060
5061Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
5062 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
5063  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
5064  3.5789086447443447`*^9, 3.5790010367026663`*^9, 3.5796086717760067`*^9}],
5065
5066Cell[BoxData["\<\"Collecting the different structures that enter the \
5067vertex.\"\>"], "Print",
5068 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
5069  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
5070  3.5789086447443447`*^9, 3.5790010367026663`*^9, 3.5796086718379517`*^9}],
5071
5072Cell[BoxData[
5073 InterpretationBox[
5074  RowBox[{
5075  "2", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
5076-> starting the computation: \"\>", "\[InvisibleSpace]",
5077   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
5078    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
5079   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\".\"\>"}],
5080  SequenceForm[
5081  2, " possible non-zero vertices have been found -> starting the \
5082computation: ",
5083   Dynamic[FeynRules`FR$FeynmanRules], " / ", 2, "."],
5084  Editable->False]], "Print",
5085 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
5086  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
5087  3.5789086447443447`*^9, 3.5790010367026663`*^9, 3.579608671845755*^9}],
5088
5089Cell[BoxData[
5090 InterpretationBox[
5091  RowBox[{"2", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
5092  SequenceForm[2, " vertices obtained."],
5093  Editable->False]], "Print",
5094 CellChangeTimes->{3.577174312701707*^9, 3.577184078132329*^9,
5095  3.5783073968912373`*^9, 3.5787389716238117`*^9, 3.578907193087538*^9,
5096  3.5789086447443447`*^9, 3.5790010367026663`*^9, 3.579608671937813*^9}]
5097}, Closed]],
5098
5099Cell[BoxData[
5100 FormBox[
5101  RowBox[{"(", "\[NoBreak]", GridBox[{
5102     {
5103      RowBox[{"(", "\[NoBreak]", GridBox[{
5104         {
5105          OverscriptBox["uq", "\<\"-\"\>"], "1"},
5106         {"uq", "2"},
5107         {"O1", "3"}
5108        },
5109        GridBoxAlignment->{
5110         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
5111          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
5112        GridBoxSpacings->{"Columns" -> {
5113            Offset[0.27999999999999997`], {
5114             Offset[0.7]},
5115            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
5116          "Rows" -> {
5117            Offset[0.2], {
5118             Offset[0.4]},
5119            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
5120      RowBox[{
5121       RowBox[{"\[ImaginaryI]", " ",
5122        SubscriptBox["g", "s"], " ",
5123        SubscriptBox["o1", "ul"], " ",
5124        SubscriptBox["\[Delta]",
5125         RowBox[{
5126          SubscriptBox["\<\"f\"\>", "1"], ",",
5127          SubscriptBox["\<\"f\"\>", "2"]}]], " ",
5128        SubscriptBox[
5129         RowBox[{
5130          SuperscriptBox["\[Gamma]",
5131           SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
5132          SubscriptBox["P", "\<\"-\"\>"]}],
5133         RowBox[{
5134          SubscriptBox["\<\"s\"\>", "1"], ",",
5135          SubscriptBox["\<\"s\"\>", "2"]}]], " ",
5136        SubsuperscriptBox["T",
5137         RowBox[{
5138          SubscriptBox["\<\"m\"\>", "1"], ",",
5139          SubscriptBox["\<\"m\"\>", "2"]}],
5140         SubscriptBox["\<\"a\"\>", "3"]]}], "+",
5141       RowBox[{"\[ImaginaryI]", " ",
5142        SubscriptBox["g", "s"], " ",
5143        SubscriptBox["o1", "ur"], " ",
5144        SubscriptBox["\[Delta]",
5145         RowBox[{
5146          SubscriptBox["\<\"f\"\>", "1"], ",",
5147          SubscriptBox["\<\"f\"\>", "2"]}]], " ",
5148        SubscriptBox[
5149         RowBox[{
5150          SuperscriptBox["\[Gamma]",
5151           SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
5152          SubscriptBox["P", "\<\"+\"\>"]}],
5153         RowBox[{
5154          SubscriptBox["\<\"s\"\>", "1"], ",",
5155          SubscriptBox["\<\"s\"\>", "2"]}]], " ",
5156        SubsuperscriptBox["T",
5157         RowBox[{
5158          SubscriptBox["\<\"m\"\>", "1"], ",",
5159          SubscriptBox["\<\"m\"\>", "2"]}],
5160         SubscriptBox["\<\"a\"\>", "3"]]}]}]},
5161     {
5162      RowBox[{"(", "\[NoBreak]", GridBox[{
5163         {
5164          OverscriptBox["dq", "\<\"-\"\>"], "1"},
5165         {"dq", "2"},
5166         {"O1", "3"}
5167        },
5168        GridBoxAlignment->{
5169         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
5170          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
5171        GridBoxSpacings->{"Columns" -> {
5172            Offset[0.27999999999999997`], {
5173             Offset[0.7]},
5174            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
5175          "Rows" -> {
5176            Offset[0.2], {
5177             Offset[0.4]},
5178            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
5179      RowBox[{
5180       RowBox[{"\[ImaginaryI]", " ",
5181        SubscriptBox["g", "s"], " ",
5182        SubscriptBox["o1", "dl"], " ",
5183        SubscriptBox["\[Delta]",
5184         RowBox[{
5185          SubscriptBox["\<\"f\"\>", "1"], ",",
5186          SubscriptBox["\<\"f\"\>", "2"]}]], " ",
5187        SubscriptBox[
5188         RowBox[{
5189          SuperscriptBox["\[Gamma]",
5190           SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
5191          SubscriptBox["P", "\<\"-\"\>"]}],
5192         RowBox[{
5193          SubscriptBox["\<\"s\"\>", "1"], ",",
5194          SubscriptBox["\<\"s\"\>", "2"]}]], " ",
5195        SubsuperscriptBox["T",
5196         RowBox[{
5197          SubscriptBox["\<\"m\"\>", "1"], ",",
5198          SubscriptBox["\<\"m\"\>", "2"]}],
5199         SubscriptBox["\<\"a\"\>", "3"]]}], "+",
5200       RowBox[{"\[ImaginaryI]", " ",
5201        SubscriptBox["g", "s"], " ",
5202        SubscriptBox["o1", "dr"], " ",
5203        SubscriptBox["\[Delta]",
5204         RowBox[{
5205          SubscriptBox["\<\"f\"\>", "1"], ",",
5206          SubscriptBox["\<\"f\"\>", "2"]}]], " ",
5207        SubscriptBox[
5208         RowBox[{
5209          SuperscriptBox["\[Gamma]",
5210           SubscriptBox["\<\"\[Mu]\"\>", "3"]], ".",
5211          SubscriptBox["P", "\<\"+\"\>"]}],
5212         RowBox[{
5213          SubscriptBox["\<\"s\"\>", "1"], ",",
5214          SubscriptBox["\<\"s\"\>", "2"]}]], " ",
5215        SubsuperscriptBox["T",
5216         RowBox[{
5217          SubscriptBox["\<\"m\"\>", "1"], ",",
5218          SubscriptBox["\<\"m\"\>", "2"]}],
5219         SubscriptBox["\<\"a\"\>", "3"]]}]}]}
5220    },
5221    GridBoxAlignment->{
5222     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
5223      "RowsIndexed" -> {}},
5224    GridBoxSpacings->{"Columns" -> {
5225        Offset[0.27999999999999997`], {
5226         Offset[0.7]},
5227        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
5228        Offset[0.2], {
5229         Offset[0.4]},
5230        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
5231  TraditionalForm]], "Output",
5232 CellChangeTimes->{
5233  3.577174312798154*^9, 3.577184078260206*^9, {3.57830739701258*^9,
5234   3.578307402611945*^9}, 3.578738972071248*^9, 3.578739014204702*^9,
5235   3.5789071935279284`*^9, 3.578908537819581*^9, {3.5789086452487926`*^9,
5236   3.5789086498895597`*^9}, {3.579001036893961*^9, 3.5790010418624887`*^9}, {
5237   3.579608671988668*^9, 3.579608678819571*^9}}]
5238}, Open  ]]
5239}, Open  ]]
5240}, Closed]],
5241
5242Cell[CellGroupData[{
5243
5244Cell["Generating UFO", "Subtitle",
5245 CellChangeTimes->{{3.5769095994290657`*^9, 3.5769096211567287`*^9}}],
5246
5247Cell[CellGroupData[{
5248
5249Cell[BoxData[{
5250 RowBox[{
5251  RowBox[{"DeleteDirectory", "[",
5252   RowBox[{
5253    RowBox[{"$FeynRulesPath", "<>", "\"\</Models/topBSM/topBSM_UFO\>\""}],
5254    ",",
5255    RowBox[{"DeleteContents", "\[Rule]", "True"}]}], "]"}],
5256  ";"}], "\[IndentingNewLine]",
5257 RowBox[{
5258  RowBox[{"WriteUFO", "[", "\[IndentingNewLine]",
5259   RowBox[{
5260   "LGauge", ",", "\[IndentingNewLine]", "LHiggs", ",", "\[IndentingNewLine]",
5261     "LFermions", ",", "\[IndentingNewLine]", "LYukawa", ",",
5262    "\[IndentingNewLine]", "LGhost", ",", "\[IndentingNewLine]", "LS0", ",",
5263    "LO0", ",", "LS1", ",", "LO1", ",", "\[IndentingNewLine]",
5264    RowBox[{
5265     RowBox[{
5266      RowBox[{"S2", "[",
5267       RowBox[{"mu", ",", "nu"}], "]"}],
5268      RowBox[{"del", "[",
5269       RowBox[{
5270        RowBox[{"uqbar", ".",
5271         RowBox[{"Ga", "[", "nu", "]"}], ".", "uq"}], ",", "mu"}], "]"}]}],
5272     "+",
5273     RowBox[{
5274      RowBox[{"S2", "[",
5275       RowBox[{"mu", ",", "nu"}], "]"}], " ",
5276      RowBox[{"FS", "[",
5277       RowBox[{"G", ",", "mu", ",", "rho", ",", "aaa"}], "]"}], " ",
5278      RowBox[{"FS", "[",
5279       RowBox[{"G", ",", "nu", ",", "rho", ",", "aaa"}], "]"}]}]}], ",",
5280    "\[IndentingNewLine]",
5281    RowBox[{"AddDecays", "\[Rule]", " ", "False"}]}], "]"}],
5282  ";"}], "\[IndentingNewLine]",
5283 RowBox[{
5284  RowBox[{"DeleteDirectory", "[",
5285   RowBox[{"\"\</scratch/skrastanov/mg5/models/topBSM_UFO\>\"", ",",
5286    RowBox[{"DeleteContents", "\[Rule]", "True"}]}], "]"}],
5287  ";"}], "\[IndentingNewLine]",
5288 RowBox[{
5289  RowBox[{"CopyDirectory", "[",
5290   RowBox[{
5291    RowBox[{"$FeynRulesPath", "<>", "\"\</Models/topBSM/topBSM_UFO\>\""}],
5292    ",", " ", "\"\</scratch/skrastanov/mg5/models/topBSM_UFO\>\""}], "]"}],
5293  ";"}]}], "Input",
5294 CellChangeTimes->{{3.57690988685634*^9, 3.576909888760282*^9}, {
5295   3.5769176535473022`*^9, 3.576917660474906*^9}, {3.576917700651354*^9,
5296   3.576917701594803*^9}, {3.5769992916361094`*^9, 3.576999294707532*^9}, {
5297   3.577001485380102*^9, 3.577001487507496*^9}, {3.5771655294596033`*^9,
5298   3.577165531634631*^9}, {3.5771661097464533`*^9, 3.577166140006445*^9}, {
5299   3.577166182821739*^9, 3.577166209957836*^9}, {3.577166256085588*^9,
5300   3.577166277974374*^9}, {3.577166330566298*^9, 3.577166350601408*^9}, {
5301   3.577166574363196*^9, 3.577166578716486*^9}, 3.577166622342843*^9, {
5302   3.578384632570266*^9, 3.5783846356256533`*^9}, {3.578659849307643*^9,
5303   3.5786598512910767`*^9}, {3.579175518528586*^9, 3.579175522224704*^9}, {
5304   3.5829803642868147`*^9, 3.582980385950281*^9}, {3.5832464055712*^9,
5305   3.5832464060199757`*^9}, {3.583319855617889*^9, 3.583319886833877*^9}}],
5306
5307Cell[CellGroupData[{
5308
5309Cell[BoxData["\<\" --- Universal FeynRules Output (UFO) v 1.1 ---\"\>"], \
5310"Print",
5311 CellChangeTimes->{
5312  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5313   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5314   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5315   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5316   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5317   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5318   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5319   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5320   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5321   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5322   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5323   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5324   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5325   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5326   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5327   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5328   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5329   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5330   3.583231906441511*^9, 3.583246453773172*^9, 3.583319899035729*^9}],
5331
5332Cell[BoxData[
5333 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
5334  StripOnInput->False,
5335  LineColor->RGBColor[1, 0.5, 0],
5336  FrontFaceColor->RGBColor[1, 0.5, 0],
5337  BackFaceColor->RGBColor[1, 0.5, 0],
5338  GraphicsColor->RGBColor[1, 0.5, 0],
5339  FontWeight->Bold,
5340  FontColor->RGBColor[1, 0.5, 0]]], "Print",
5341 CellChangeTimes->{
5342  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5343   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5344   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5345   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5346   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5347   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5348   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5349   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5350   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5351   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5352   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5353   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5354   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5355   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5356   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5357   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5358   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5359   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5360   3.583231906441511*^9, 3.583246453773172*^9, 3.583319899294512*^9}],
5361
5362Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
5363 CellChangeTimes->{
5364  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5365   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5366   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5367   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5368   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5369   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5370   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5371   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5372   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5373   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5374   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5375   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5376   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5377   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5378   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5379   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5380   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5381   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5382   3.583231906441511*^9, 3.583246453773172*^9, 3.5833198992959967`*^9}],
5383
5384Cell[BoxData[
5385 InterpretationBox[
5386  RowBox[{"\<\"Expanding indices over \"\>", "\[InvisibleSpace]", "2",
5387   "\[InvisibleSpace]", "\<\" cores\"\>"}],
5388  SequenceForm["Expanding indices over ", 2, " cores"],
5389  Editable->False]], "Print",
5390 CellChangeTimes->{
5391  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5392   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5393   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5394   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5395   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5396   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5397   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5398   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5399   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5400   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5401   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5402   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5403   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5404   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5405   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5406   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5407   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5408   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5409   3.583231906441511*^9, 3.583246453773172*^9, 3.583319899297271*^9}],
5410
5411Cell[BoxData["\<\"Collecting the different structures that enter the \
5412vertex.\"\>"], "Print",
5413 CellChangeTimes->{
5414  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5415   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5416   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5417   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5418   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5419   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5420   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5421   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5422   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5423   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5424   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5425   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5426   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5427   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5428   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5429   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5430   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5431   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5432   3.583231906441511*^9, 3.583246453773172*^9, 3.583319900153119*^9}],
5433
5434Cell[BoxData[
5435 InterpretationBox[
5436  RowBox[{
5437  "8", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
5438-> starting the computation: \"\>", "\[InvisibleSpace]",
5439   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
5440    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
5441   "\[InvisibleSpace]", "8", "\[InvisibleSpace]", "\<\".\"\>"}],
5442  SequenceForm[
5443  8, " possible non-zero vertices have been found -> starting the \
5444computation: ",
5445   Dynamic[FeynRules`FR$FeynmanRules], " / ", 8, "."],
5446  Editable->False]], "Print",
5447 CellChangeTimes->{
5448  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5449   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5450   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5451   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5452   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5453   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5454   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5455   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5456   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5457   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5458   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5459   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5460   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5461   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5462   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5463   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5464   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5465   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5466   3.583231906441511*^9, 3.583246453773172*^9, 3.58331990020759*^9}],
5467
5468Cell[BoxData[
5469 InterpretationBox[
5470  RowBox[{"8", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
5471  SequenceForm[8, " vertices obtained."],
5472  Editable->False]], "Print",
5473 CellChangeTimes->{
5474  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5475   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5476   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5477   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5478   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5479   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5480   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5481   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5482   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5483   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5484   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5485   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5486   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5487   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5488   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5489   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5490   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5491   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5492   3.583231906441511*^9, 3.583246453773172*^9, 3.583319901003923*^9}],
5493
5494Cell[BoxData[
5495 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
5496  StripOnInput->False,
5497  LineColor->RGBColor[1, 0.5, 0],
5498  FrontFaceColor->RGBColor[1, 0.5, 0],
5499  BackFaceColor->RGBColor[1, 0.5, 0],
5500  GraphicsColor->RGBColor[1, 0.5, 0],
5501  FontWeight->Bold,
5502  FontColor->RGBColor[1, 0.5, 0]]], "Print",
5503 CellChangeTimes->{
5504  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5505   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5506   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5507   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5508   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5509   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5510   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5511   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5512   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5513   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5514   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5515   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5516   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5517   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5518   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5519   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5520   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5521   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5522   3.583231906441511*^9, 3.583246453773172*^9, 3.583319901005525*^9}],
5523
5524Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
5525 CellChangeTimes->{
5526  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5527   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5528   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5529   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5530   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5531   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5532   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5533   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5534   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5535   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5536   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5537   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5538   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5539   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5540   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5541   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5542   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5543   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5544   3.583231906441511*^9, 3.583246453773172*^9, 3.583319901006782*^9}],
5545
5546Cell[BoxData["\<\"Collecting the different structures that enter the \
5547vertex.\"\>"], "Print",
5548 CellChangeTimes->{
5549  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5550   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5551   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5552   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5553   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5554   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5555   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5556   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5557   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5558   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5559   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5560   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5561   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5562   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5563   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5564   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5565   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5566   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5567   3.583231906441511*^9, 3.583246453773172*^9, 3.583319901138495*^9}],
5568
5569Cell[BoxData[
5570 InterpretationBox[
5571  RowBox[{
5572  "6", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
5573-> starting the computation: \"\>", "\[InvisibleSpace]",
5574   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
5575    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
5576   "\[InvisibleSpace]", "6", "\[InvisibleSpace]", "\<\".\"\>"}],
5577  SequenceForm[
5578  6, " possible non-zero vertices have been found -> starting the \
5579computation: ",
5580   Dynamic[FeynRules`FR$FeynmanRules], " / ", 6, "."],
5581  Editable->False]], "Print",
5582 CellChangeTimes->{
5583  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5584   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5585   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5586   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5587   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5588   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5589   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5590   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5591   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5592   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5593   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5594   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5595   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5596   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5597   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5598   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5599   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5600   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5601   3.583231906441511*^9, 3.583246453773172*^9, 3.583319901141436*^9}],
5602
5603Cell[BoxData[
5604 InterpretationBox[
5605  RowBox[{"6", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
5606  SequenceForm[6, " vertices obtained."],
5607  Editable->False]], "Print",
5608 CellChangeTimes->{
5609  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5610   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5611   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5612   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5613   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5614   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5615   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5616   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5617   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5618   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5619   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5620   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5621   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5622   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5623   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5624   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5625   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5626   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5627   3.583231906441511*^9, 3.583246453773172*^9, 3.583319901237509*^9}],
5628
5629Cell[BoxData[
5630 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
5631  StripOnInput->False,
5632  LineColor->RGBColor[1, 0.5, 0],
5633  FrontFaceColor->RGBColor[1, 0.5, 0],
5634  BackFaceColor->RGBColor[1, 0.5, 0],
5635  GraphicsColor->RGBColor[1, 0.5, 0],
5636  FontWeight->Bold,
5637  FontColor->RGBColor[1, 0.5, 0]]], "Print",
5638 CellChangeTimes->{
5639  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5640   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5641   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5642   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5643   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5644   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5645   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5646   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5647   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5648   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5649   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5650   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5651   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5652   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5653   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5654   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5655   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5656   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5657   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199012970753`*^9}],
5658
5659Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
5660 CellChangeTimes->{
5661  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5662   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5663   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5664   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5665   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5666   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5667   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5668   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5669   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5670   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5671   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5672   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5673   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5674   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5675   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5676   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5677   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5678   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5679   3.583231906441511*^9, 3.583246453773172*^9, 3.583319901303823*^9}],
5680
5681Cell[BoxData[
5682 InterpretationBox[
5683  RowBox[{"\<\"Expanding indices over \"\>", "\[InvisibleSpace]", "2",
5684   "\[InvisibleSpace]", "\<\" cores\"\>"}],
5685  SequenceForm["Expanding indices over ", 2, " cores"],
5686  Editable->False]], "Print",
5687 CellChangeTimes->{
5688  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5689   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5690   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5691   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5692   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5693   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5694   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5695   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5696   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5697   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5698   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5699   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5700   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5701   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5702   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5703   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5704   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5705   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5706   3.583231906441511*^9, 3.583246453773172*^9, 3.58331990130518*^9}],
5707
5708Cell[BoxData["\<\"Collecting the different structures that enter the \
5709vertex.\"\>"], "Print",
5710 CellChangeTimes->{
5711  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5712   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5713   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5714   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5715   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5716   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5717   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5718   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5719   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5720   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5721   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5722   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5723   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5724   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5725   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5726   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5727   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5728   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5729   3.583231906441511*^9, 3.583246453773172*^9, 3.583319902420011*^9}],
5730
5731Cell[BoxData[
5732 InterpretationBox[
5733  RowBox[{
5734  "18", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
5735-> starting the computation: \"\>", "\[InvisibleSpace]",
5736   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
5737    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
5738   "\[InvisibleSpace]", "18", "\[InvisibleSpace]", "\<\".\"\>"}],
5739  SequenceForm[
5740  18, " possible non-zero vertices have been found -> starting the \
5741computation: ",
5742   Dynamic[FeynRules`FR$FeynmanRules], " / ", 18, "."],
5743  Editable->False]], "Print",
5744 CellChangeTimes->{
5745  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5746   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5747   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5748   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5749   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5750   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5751   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5752   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5753   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5754   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5755   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5756   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5757   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5758   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5759   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5760   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5761   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5762   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5763   3.583231906441511*^9, 3.583246453773172*^9, 3.583319902486619*^9}],
5764
5765Cell[BoxData[
5766 InterpretationBox[
5767  RowBox[{"13", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
5768  SequenceForm[13, " vertices obtained."],
5769  Editable->False]], "Print",
5770 CellChangeTimes->{
5771  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5772   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5773   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5774   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5775   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5776   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5777   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5778   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5779   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5780   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5781   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5782   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5783   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5784   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5785   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5786   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5787   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5788   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5789   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903466501*^9}],
5790
5791Cell[BoxData[
5792 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
5793  StripOnInput->False,
5794  LineColor->RGBColor[1, 0.5, 0],
5795  FrontFaceColor->RGBColor[1, 0.5, 0],
5796  BackFaceColor->RGBColor[1, 0.5, 0],
5797  GraphicsColor->RGBColor[1, 0.5, 0],
5798  FontWeight->Bold,
5799  FontColor->RGBColor[1, 0.5, 0]]], "Print",
5800 CellChangeTimes->{
5801  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5802   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5803   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5804   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5805   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5806   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5807   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5808   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5809   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5810   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5811   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5812   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5813   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5814   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5815   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5816   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5817   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5818   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5819   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903530675*^9}],
5820
5821Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
5822 CellChangeTimes->{
5823  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5824   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5825   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5826   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5827   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5828   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5829   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5830   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5831   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5832   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5833   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5834   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5835   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5836   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5837   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5838   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5839   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5840   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5841   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903532077*^9}],
5842
5843Cell[BoxData["\<\"Collecting the different structures that enter the \
5844vertex.\"\>"], "Print",
5845 CellChangeTimes->{
5846  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5847   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5848   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5849   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5850   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5851   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5852   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5853   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5854   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5855   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5856   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5857   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5858   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5859   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5860   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5861   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5862   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5863   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5864   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199037303*^9}],
5865
5866Cell[BoxData[
5867 InterpretationBox[
5868  RowBox[{
5869  "3", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
5870-> starting the computation: \"\>", "\[InvisibleSpace]",
5871   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
5872    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
5873   "\[InvisibleSpace]", "3", "\[InvisibleSpace]", "\<\".\"\>"}],
5874  SequenceForm[
5875  3, " possible non-zero vertices have been found -> starting the \
5876computation: ",
5877   Dynamic[FeynRules`FR$FeynmanRules], " / ", 3, "."],
5878  Editable->False]], "Print",
5879 CellChangeTimes->{
5880  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5881   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5882   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5883   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5884   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5885   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5886   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5887   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5888   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5889   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5890   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5891   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5892   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5893   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5894   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5895   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5896   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5897   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5898   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903785268*^9}],
5899
5900Cell[BoxData[
5901 InterpretationBox[
5902  RowBox[{"3", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
5903  SequenceForm[3, " vertices obtained."],
5904  Editable->False]], "Print",
5905 CellChangeTimes->{
5906  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5907   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5908   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5909   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5910   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5911   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5912   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5913   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5914   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5915   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5916   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5917   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5918   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5919   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5920   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5921   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5922   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5923   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5924   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903859865*^9}],
5925
5926Cell[BoxData[
5927 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
5928  StripOnInput->False,
5929  LineColor->RGBColor[1, 0.5, 0],
5930  FrontFaceColor->RGBColor[1, 0.5, 0],
5931  BackFaceColor->RGBColor[1, 0.5, 0],
5932  GraphicsColor->RGBColor[1, 0.5, 0],
5933  FontWeight->Bold,
5934  FontColor->RGBColor[1, 0.5, 0]]], "Print",
5935 CellChangeTimes->{
5936  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5937   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5938   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5939   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5940   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5941   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5942   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5943   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5944   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5945   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5946   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5947   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5948   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5949   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5950   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5951   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5952   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5953   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5954   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199038614264`*^9}],
5955
5956Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
5957 CellChangeTimes->{
5958  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5959   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5960   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5961   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5962   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5963   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5964   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5965   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5966   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5967   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5968   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5969   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5970   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5971   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5972   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5973   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5974   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5975   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5976   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903862747*^9}],
5977
5978Cell[BoxData["\<\"Collecting the different structures that enter the \
5979vertex.\"\>"], "Print",
5980 CellChangeTimes->{
5981  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
5982   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
5983   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
5984   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
5985   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
5986   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
5987   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
5988   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
5989   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
5990   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
5991   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
5992   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
5993   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
5994   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
5995   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
5996   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
5997   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
5998   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
5999   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903916218*^9}],
6000
6001Cell[BoxData[
6002 InterpretationBox[
6003  RowBox[{
6004  "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
6005-> starting the computation: \"\>", "\[InvisibleSpace]",
6006   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
6007    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
6008   "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
6009  SequenceForm[
6010  1, " possible non-zero vertices have been found -> starting the \
6011computation: ",
6012   Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
6013  Editable->False]], "Print",
6014 CellChangeTimes->{
6015  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6016   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6017   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6018   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6019   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6020   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6021   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6022   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6023   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6024   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6025   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6026   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6027   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6028   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6029   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6030   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6031   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6032   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6033   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903917953*^9}],
6034
6035Cell[BoxData["\<\"1 vertex obtained.\"\>"], "Print",
6036 CellChangeTimes->{
6037  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6038   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6039   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6040   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6041   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6042   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6043   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6044   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6045   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6046   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6047   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6048   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6049   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6050   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6051   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6052   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6053   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6054   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6055   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199039199467`*^9}],
6056
6057Cell[BoxData[
6058 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
6059  StripOnInput->False,
6060  LineColor->RGBColor[1, 0.5, 0],
6061  FrontFaceColor->RGBColor[1, 0.5, 0],
6062  BackFaceColor->RGBColor[1, 0.5, 0],
6063  GraphicsColor->RGBColor[1, 0.5, 0],
6064  FontWeight->Bold,
6065  FontColor->RGBColor[1, 0.5, 0]]], "Print",
6066 CellChangeTimes->{
6067  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6068   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6069   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6070   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6071   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6072   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6073   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6074   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6075   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6076   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6077   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6078   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6079   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6080   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6081   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6082   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6083   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6084   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6085   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199039213037`*^9}],
6086
6087Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
6088 CellChangeTimes->{
6089  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6090   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6091   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6092   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6093   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6094   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6095   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6096   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6097   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6098   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6099   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6100   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6101   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6102   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6103   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6104   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6105   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6106   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6107   3.583231906441511*^9, 3.583246453773172*^9, 3.583319903922597*^9}],
6108
6109Cell[BoxData["\<\"Collecting the different structures that enter the \
6110vertex.\"\>"], "Print",
6111 CellChangeTimes->{
6112  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6113   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6114   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6115   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6116   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6117   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6118   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6119   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6120   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6121   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6122   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6123   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6124   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6125   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6126   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6127   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6128   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6129   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6130   3.583231906441511*^9, 3.583246453773172*^9, 3.583319906088135*^9}],
6131
6132Cell[BoxData[
6133 InterpretationBox[
6134  RowBox[{
6135  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
6136-> starting the computation: \"\>", "\[InvisibleSpace]",
6137   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
6138    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
6139   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
6140  SequenceForm[
6141  4, " possible non-zero vertices have been found -> starting the \
6142computation: ",
6143   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
6144  Editable->False]], "Print",
6145 CellChangeTimes->{
6146  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6147   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6148   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6149   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6150   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6151   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6152   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6153   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6154   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6155   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6156   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6157   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6158   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6159   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6160   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6161   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6162   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6163   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6164   3.583231906441511*^9, 3.583246453773172*^9, 3.583319906147888*^9}],
6165
6166Cell[BoxData[
6167 InterpretationBox[
6168  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
6169  SequenceForm[4, " vertices obtained."],
6170  Editable->False]], "Print",
6171 CellChangeTimes->{
6172  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6173   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6174   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6175   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6176   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6177   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6178   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6179   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6180   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6181   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6182   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6183   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6184   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6185   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6186   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6187   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6188   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6189   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6190   3.583231906441511*^9, 3.583246453773172*^9, 3.583319914745257*^9}],
6191
6192Cell[BoxData[
6193 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
6194  StripOnInput->False,
6195  LineColor->RGBColor[1, 0.5, 0],
6196  FrontFaceColor->RGBColor[1, 0.5, 0],
6197  BackFaceColor->RGBColor[1, 0.5, 0],
6198  GraphicsColor->RGBColor[1, 0.5, 0],
6199  FontWeight->Bold,
6200  FontColor->RGBColor[1, 0.5, 0]]], "Print",
6201 CellChangeTimes->{
6202  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6203   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6204   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6205   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6206   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6207   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6208   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6209   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6210   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6211   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6212   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6213   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6214   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6215   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6216   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6217   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6218   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6219   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6220   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199148128653`*^9}],
6221
6222Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
6223 CellChangeTimes->{
6224  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6225   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6226   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6227   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6228   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6229   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6230   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6231   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6232   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6233   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6234   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6235   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6236   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6237   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6238   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6239   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6240   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6241   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6242   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199148143587`*^9}],
6243
6244Cell[BoxData["\<\"Collecting the different structures that enter the \
6245vertex.\"\>"], "Print",
6246 CellChangeTimes->{
6247  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6248   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6249   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6250   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6251   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6252   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6253   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6254   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6255   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6256   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6257   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6258   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6259   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6260   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6261   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6262   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6263   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6264   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6265   3.583231906441511*^9, 3.583246453773172*^9, 3.583319918798656*^9}],
6266
6267Cell[BoxData[
6268 InterpretationBox[
6269  RowBox[{
6270  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
6271-> starting the computation: \"\>", "\[InvisibleSpace]",
6272   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
6273    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
6274   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
6275  SequenceForm[
6276  4, " possible non-zero vertices have been found -> starting the \
6277computation: ",
6278   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
6279  Editable->False]], "Print",
6280 CellChangeTimes->{
6281  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6282   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6283   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6284   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6285   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6286   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6287   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6288   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6289   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6290   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6291   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6292   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6293   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6294   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6295   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6296   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6297   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6298   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6299   3.583231906441511*^9, 3.583246453773172*^9, 3.583319918983045*^9}],
6300
6301Cell[BoxData[
6302 InterpretationBox[
6303  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
6304  SequenceForm[4, " vertices obtained."],
6305  Editable->False]], "Print",
6306 CellChangeTimes->{
6307  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6308   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6309   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6310   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6311   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6312   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6313   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6314   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6315   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6316   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6317   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6318   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6319   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6320   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6321   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6322   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6323   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6324   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6325   3.583231906441511*^9, 3.583246453773172*^9, 3.583319934863063*^9}],
6326
6327Cell[BoxData[
6328 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
6329  StripOnInput->False,
6330  LineColor->RGBColor[1, 0.5, 0],
6331  FrontFaceColor->RGBColor[1, 0.5, 0],
6332  BackFaceColor->RGBColor[1, 0.5, 0],
6333  GraphicsColor->RGBColor[1, 0.5, 0],
6334  FontWeight->Bold,
6335  FontColor->RGBColor[1, 0.5, 0]]], "Print",
6336 CellChangeTimes->{
6337  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6338   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6339   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6340   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6341   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6342   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6343   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6344   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6345   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6346   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6347   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6348   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6349   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6350   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6351   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6352   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6353   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6354   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6355   3.583231906441511*^9, 3.583246453773172*^9, 3.583319934865183*^9}],
6356
6357Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
6358 CellChangeTimes->{
6359  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6360   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6361   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6362   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6363   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6364   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6365   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6366   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6367   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6368   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6369   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6370   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6371   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6372   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6373   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6374   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6375   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6376   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6377   3.583231906441511*^9, 3.583246453773172*^9, 3.58331993486655*^9}],
6378
6379Cell[BoxData["\<\"Collecting the different structures that enter the \
6380vertex.\"\>"], "Print",
6381 CellChangeTimes->{
6382  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6383   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6384   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6385   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6386   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6387   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6388   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6389   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6390   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6391   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6392   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6393   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6394   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6395   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6396   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6397   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6398   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6399   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6400   3.583231906441511*^9, 3.583246453773172*^9, 3.58331993512037*^9}],
6401
6402Cell[BoxData[
6403 InterpretationBox[
6404  RowBox[{
6405  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
6406-> starting the computation: \"\>", "\[InvisibleSpace]",
6407   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
6408    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
6409   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
6410  SequenceForm[
6411  4, " possible non-zero vertices have been found -> starting the \
6412computation: ",
6413   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
6414  Editable->False]], "Print",
6415 CellChangeTimes->{
6416  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6417   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6418   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6419   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6420   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6421   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6422   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6423   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6424   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6425   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6426   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6427   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6428   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6429   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6430   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6431   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6432   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6433   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6434   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935205585*^9}],
6435
6436Cell[BoxData[
6437 InterpretationBox[
6438  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
6439  SequenceForm[4, " vertices obtained."],
6440  Editable->False]], "Print",
6441 CellChangeTimes->{
6442  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6443   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6444   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6445   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6446   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6447   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6448   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6449   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6450   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6451   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6452   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6453   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6454   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6455   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6456   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6457   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6458   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6459   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6460   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935355506*^9}],
6461
6462Cell[BoxData[
6463 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
6464  StripOnInput->False,
6465  LineColor->RGBColor[1, 0.5, 0],
6466  FrontFaceColor->RGBColor[1, 0.5, 0],
6467  BackFaceColor->RGBColor[1, 0.5, 0],
6468  GraphicsColor->RGBColor[1, 0.5, 0],
6469  FontWeight->Bold,
6470  FontColor->RGBColor[1, 0.5, 0]]], "Print",
6471 CellChangeTimes->{
6472  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6473   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6474   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6475   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6476   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6477   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6478   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6479   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6480   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6481   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6482   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6483   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6484   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6485   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6486   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6487   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6488   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6489   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6490   3.583231906441511*^9, 3.583246453773172*^9, 3.58331993535756*^9}],
6491
6492Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
6493 CellChangeTimes->{
6494  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6495   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6496   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6497   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6498   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6499   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6500   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6501   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6502   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6503   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6504   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6505   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6506   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6507   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6508   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6509   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6510   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6511   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6512   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199353589697`*^9}],
6513
6514Cell[BoxData["\<\"Collecting the different structures that enter the \
6515vertex.\"\>"], "Print",
6516 CellChangeTimes->{
6517  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6518   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6519   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6520   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6521   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6522   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6523   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6524   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6525   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6526   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6527   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6528   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6529   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6530   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6531   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6532   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6533   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6534   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6535   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935483459*^9}],
6536
6537Cell[BoxData[
6538 InterpretationBox[
6539  RowBox[{
6540  "2", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
6541-> starting the computation: \"\>", "\[InvisibleSpace]",
6542   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
6543    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
6544   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\".\"\>"}],
6545  SequenceForm[
6546  2, " possible non-zero vertices have been found -> starting the \
6547computation: ",
6548   Dynamic[FeynRules`FR$FeynmanRules], " / ", 2, "."],
6549  Editable->False]], "Print",
6550 CellChangeTimes->{
6551  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6552   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6553   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6554   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6555   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6556   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6557   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6558   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6559   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6560   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6561   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6562   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6563   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6564   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6565   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6566   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6567   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6568   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6569   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935485257*^9}],
6570
6571Cell[BoxData[
6572 InterpretationBox[
6573  RowBox[{"2", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
6574  SequenceForm[2, " vertices obtained."],
6575  Editable->False]], "Print",
6576 CellChangeTimes->{
6577  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6578   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6579   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6580   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6581   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6582   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6583   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6584   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6585   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6586   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6587   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6588   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6589   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6590   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6591   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6592   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6593   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6594   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6595   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935607464*^9}],
6596
6597Cell[BoxData[
6598 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
6599  StripOnInput->False,
6600  LineColor->RGBColor[1, 0.5, 0],
6601  FrontFaceColor->RGBColor[1, 0.5, 0],
6602  BackFaceColor->RGBColor[1, 0.5, 0],
6603  GraphicsColor->RGBColor[1, 0.5, 0],
6604  FontWeight->Bold,
6605  FontColor->RGBColor[1, 0.5, 0]]], "Print",
6606 CellChangeTimes->{
6607  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6608   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6609   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6610   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6611   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6612   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6613   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6614   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6615   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6616   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6617   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6618   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6619   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6620   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6621   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6622   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6623   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6624   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6625   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935609356*^9}],
6626
6627Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
6628 CellChangeTimes->{
6629  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6630   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6631   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6632   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6633   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6634   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6635   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6636   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6637   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6638   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6639   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6640   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6641   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6642   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6643   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6644   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6645   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6646   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6647   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935610751*^9}],
6648
6649Cell[BoxData["\<\"Collecting the different structures that enter the \
6650vertex.\"\>"], "Print",
6651 CellChangeTimes->{
6652  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6653   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6654   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6655   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6656   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6657   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6658   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6659   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6660   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6661   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6662   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6663   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6664   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6665   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6666   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6667   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6668   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6669   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6670   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935762847*^9}],
6671
6672Cell[BoxData[
6673 InterpretationBox[
6674  RowBox[{
6675  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
6676-> starting the computation: \"\>", "\[InvisibleSpace]",
6677   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
6678    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
6679   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
6680  SequenceForm[
6681  4, " possible non-zero vertices have been found -> starting the \
6682computation: ",
6683   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
6684  Editable->False]], "Print",
6685 CellChangeTimes->{
6686  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6687   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6688   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6689   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6690   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6691   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6692   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6693   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6694   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6695   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6696   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6697   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6698   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6699   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6700   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6701   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6702   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6703   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6704   3.583231906441511*^9, 3.583246453773172*^9, 3.583319935815529*^9}],
6705
6706Cell[BoxData[
6707 InterpretationBox[
6708  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
6709  SequenceForm[4, " vertices obtained."],
6710  Editable->False]], "Print",
6711 CellChangeTimes->{
6712  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6713   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6714   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6715   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6716   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6717   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6718   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6719   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6720   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6721   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6722   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6723   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6724   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6725   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6726   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6727   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6728   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6729   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6730   3.583231906441511*^9, 3.583246453773172*^9, 3.583319937623239*^9}],
6731
6732Cell[BoxData[
6733 InterpretationBox[
6734  RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
6735   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
6736  SequenceForm[
6737  "Flavor expansion of the vertices distributed over ", 2, " kernels."],
6738  Editable->False]], "Print",
6739 CellChangeTimes->{
6740  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6741   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6742   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6743   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6744   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6745   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6746   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6747   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6748   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6749   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6750   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6751   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6752   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6753   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6754   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6755   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6756   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6757   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6758   3.583231906441511*^9, 3.583246453773172*^9, 3.583319938980987*^9}],
6759
6760Cell[BoxData["\<\"   - Saved vertices in InterfaceRun[ 1 ].\"\>"], "Print",
6761 CellChangeTimes->{
6762  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6763   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6764   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6765   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6766   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6767   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6768   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6769   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6770   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6771   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6772   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6773   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6774   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6775   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6776   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6777   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6778   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6779   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6780   3.583231906441511*^9, 3.583246453773172*^9, 3.583319944127348*^9}],
6781
6782Cell[BoxData["\<\"Preparing Python output.\"\>"], "Print",
6783 CellChangeTimes->{
6784  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6785   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6786   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6787   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6788   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6789   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6790   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6791   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6792   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6793   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6794   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6795   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6796   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6797   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6798   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6799   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6800   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6801   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6802   3.583231906441511*^9, 3.583246453773172*^9, 3.5833199441856403`*^9}],
6803
6804Cell[BoxData["\<\"    - Splitting vertices into building blocks.\"\>"], \
6805"Print",
6806 CellChangeTimes->{
6807  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6808   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6809   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6810   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6811   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6812   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6813   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6814   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6815   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6816   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6817   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6818   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6819   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6820   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6821   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6822   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6823   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6824   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6825   3.583231906441511*^9, 3.583246453773172*^9, 3.583319945006302*^9}],
6826
6827Cell[BoxData[
6828 InterpretationBox[
6829  RowBox[{"\<\"Splitting of vertices distributed over \"\>",
6830   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
6831  SequenceForm["Splitting of vertices distributed over ", 2, " kernels."],
6832  Editable->False]], "Print",
6833 CellChangeTimes->{
6834  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6835   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6836   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6837   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6838   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6839   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6840   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6841   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6842   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6843   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6844   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6845   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6846   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6847   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6848   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6849   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6850   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6851   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6852   3.583231906441511*^9, 3.583246453773172*^9, 3.583319945260106*^9}],
6853
6854Cell[BoxData[
6855 InterpretationBox[
6856  RowBox[{"\<\"    - Optimizing: \"\>", "\[InvisibleSpace]",
6857   DynamicBox[ToBoxes[PRIVATE`PY$SplitVertexCounter, StandardForm],
6858    ImageSizeCache->{16., {0., 8.}}], "\[InvisibleSpace]", "\<\"/\"\>",
6859   "\[InvisibleSpace]", "93", "\[InvisibleSpace]", "\<\" .\"\>"}],
6860  SequenceForm["    - Optimizing: ",
6861   Dynamic[PRIVATE`PY$SplitVertexCounter], "/", 93, " ."],
6862  Editable->False]], "Print",
6863 CellChangeTimes->{
6864  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6865   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6866   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6867   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6868   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6869   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6870   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6871   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6872   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6873   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6874   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6875   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6876   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6877   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6878   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6879   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6880   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6881   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6882   3.583231906441511*^9, 3.583246453773172*^9, 3.583319946647532*^9}],
6883
6884Cell[BoxData["\<\"    - Writing files.\"\>"], "Print",
6885 CellChangeTimes->{
6886  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6887   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6888   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6889   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6890   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6891   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6892   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6893   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6894   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6895   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6896   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6897   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6898   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6899   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6900   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6901   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6902   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6903   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6904   3.583231906441511*^9, 3.583246453773172*^9, 3.583319946932748*^9}],
6905
6906Cell[BoxData["\<\"Done!\"\>"], "Print",
6907 CellChangeTimes->{
6908  3.576909891981635*^9, 3.5769100258059797`*^9, 3.57691742061303*^9,
6909   3.576917469973853*^9, 3.576917662664886*^9, 3.576917703734581*^9,
6910   3.5769179442875147`*^9, 3.57691996947579*^9, 3.57692164821926*^9, {
6911   3.5769241261931133`*^9, 3.576924155043062*^9}, 3.576924323988607*^9, {
6912   3.576924398292897*^9, 3.576924420938908*^9}, 3.5769246199724083`*^9,
6913   3.576924888730426*^9, 3.576926276786317*^9, 3.5769293796879473`*^9,
6914   3.576929803521225*^9, 3.577001549655031*^9, 3.577011866186071*^9,
6915   3.577166143464096*^9, {3.5771661968561687`*^9, 3.577166225544922*^9},
6916   3.5771663735501537`*^9, 3.577166581163175*^9, 3.578140413680502*^9,
6917   3.5781406704549627`*^9, 3.578140762974176*^9, 3.578141000521132*^9,
6918   3.578144337514853*^9, 3.5782060637851048`*^9, {3.578384620465341*^9,
6919   3.578384638215139*^9}, 3.5783847177388153`*^9, 3.578659854436335*^9,
6920   3.578660043515574*^9, 3.578737921028932*^9, 3.578738487452351*^9,
6921   3.5787391250274563`*^9, 3.57890875247561*^9, 3.578918447175644*^9, {
6922   3.579175512952828*^9, 3.579175524599847*^9}, 3.579175626304579*^9,
6923   3.579248322082686*^9, 3.579248688879595*^9, 3.579248883651945*^9,
6924   3.5795063977930183`*^9, 3.57959949781769*^9, 3.579600067870562*^9,
6925   3.5796095692421227`*^9, 3.581076714774959*^9, 3.582980393466264*^9,
6926   3.583231906441511*^9, 3.583246453773172*^9, 3.583319947123435*^9}]
6927}, Open  ]]
6928}, Open  ]]
6929}, Closed]],
6930
6931Cell[CellGroupData[{
6932
6933Cell["Addendum: The gluon fussion through a top loop", "Subtitle",
6934 CellChangeTimes->{{3.577188867418963*^9, 3.577188909940403*^9},
6935   3.577434596568234*^9}],
6936
6937Cell["\<\
6938We will work out the details of the top loop for each of the scalars here. We \
6939will use FeynCalc. However as both FeynCalc and FeynRules polute the \
6940namespace with a great number of global variable we will do it in a separate \
6941notebook.\
6942\>", "Text",
6943 CellChangeTimes->{{3.577437420574812*^9, 3.577437493639023*^9}, {
6944  3.5774377991301527`*^9, 3.577437822151277*^9}, {3.577438602359129*^9,
6945  3.577438654599126*^9}}],
6946
6947Cell[CellGroupData[{
6948
6949Cell["The vertices in the loop", "Subsubtitle",
6950 CellChangeTimes->{{3.577436091865487*^9, 3.57743612559056*^9}, {
6951  3.57743866379878*^9, 3.577438678023211*^9}}],
6952
6953Cell[CellGroupData[{
6954
6955Cell[BoxData["LS0top"], "Input",
6956 CellChangeTimes->{{3.577436903497677*^9, 3.5774369079530363`*^9}}],
6957
6958Cell[BoxData[
6959 FormBox[
6960  RowBox[{
6961   FractionBox[
6962    RowBox[{"MT", " ", "S0", " ",
6963     RowBox[{
6964      OverscriptBox["t", "\<\"-\"\>"], ".", "t"}], " ",
6965     SubscriptBox["s0", "scalar"]}], "vev"], "+",
6966   FractionBox[
6967    RowBox[{"\[ImaginaryI]", " ", "MT", " ", "S0", " ",
6968     SubscriptBox["s0", "axial"], " ",
6969     RowBox[{
6970      OverscriptBox["t", "\<\"-\"\>"], ".",
6971      SuperscriptBox["\[Gamma]", "5"], ".", "t"}]}], "vev"]}],
6972  TraditionalForm]], "Output",
6973 CellChangeTimes->{3.577436908502611*^9, 3.577437064982656*^9}]
6974}, Open  ]],
6975
6976Cell[CellGroupData[{
6977
6978Cell[BoxData[{
6979 RowBox[{"FeynmanRules", "[",
6980  RowBox[{
6981   RowBox[{"S0", " ",
6982    RowBox[{"tbar", ".", "t"}]}], ",", " ",
6983   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}],
6984  "]"}], "\[IndentingNewLine]",
6985 RowBox[{"FeynmanRules", "[",
6986  RowBox[{
6987   RowBox[{"I", " ", "S0", " ",
6988    RowBox[{"tbar", ".",
6989     RowBox[{"Ga", "[", "5", "]"}], ".", "t"}]}], ",", " ",
6990   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]}], "Input",
6991 CellChangeTimes->{{3.577436563529793*^9, 3.577436567347454*^9}, {
6992  3.577436886441903*^9, 3.577436897321623*^9}, {3.577436927690117*^9,
6993  3.5774370424449587`*^9}, {3.577437098716362*^9, 3.577437102055475*^9}, {
6994  3.5774371389718657`*^9, 3.5774371392756643`*^9}, {3.57743868954988*^9,
6995  3.5774386940925217`*^9}}],
6996
6997Cell[CellGroupData[{
6998
6999Cell[BoxData[
7000 FormBox[
7001  StyleBox["\<\"Starting Feynman rule calculation.\"\>",
7002   StripOnInput->False,
7003   LineColor->RGBColor[1, 0.5, 0],
7004   FrontFaceColor->RGBColor[1, 0.5, 0],
7005   BackFaceColor->RGBColor[1, 0.5, 0],
7006   GraphicsColor->RGBColor[1, 0.5, 0],
7007   FontWeight->Bold,
7008   FontColor->RGBColor[1, 0.5, 0]], TraditionalForm]], "Print",
7009 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7010   3.577437103045848*^9, 3.57743713992177*^9, 3.5774386962267303`*^9}],
7011
7012Cell[BoxData[
7013 FormBox["\<\"Expanding the Lagrangian...\"\>", TraditionalForm]], "Print",
7014 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7015   3.577437103045848*^9, 3.57743713992177*^9, 3.57743869626859*^9}],
7016
7017Cell[BoxData[
7018 FormBox["\<\"Collecting the different structures that enter the vertex.\"\>",
7019   TraditionalForm]], "Print",
7020 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7021   3.577437103045848*^9, 3.57743713992177*^9, 3.577438696272663*^9}],
7022
7023Cell[BoxData[
7024 FormBox[
7025  InterpretationBox[
7026   RowBox[{
7027   "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
7028-> starting the computation: \"\>", "\[InvisibleSpace]",
7029    DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, TraditionalForm],
7030     ImageSizeCache->{6., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7031    "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
7032   SequenceForm[
7033   1, " possible non-zero vertices have been found -> starting the \
7034computation: ",
7035    Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
7036   Editable->False], TraditionalForm]], "Print",
7037 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7038   3.577437103045848*^9, 3.57743713992177*^9, 3.577438696275209*^9}],
7039
7040Cell[BoxData[
7041 FormBox["\<\"1 vertex obtained.\"\>", TraditionalForm]], "Print",
7042 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7043   3.577437103045848*^9, 3.57743713992177*^9, 3.577438696276963*^9}]
7044}, Closed]],
7045
7046Cell[BoxData[
7047 FormBox[
7048  RowBox[{"(", "\[NoBreak]", GridBox[{
7049     {
7050      RowBox[{"(", "\[NoBreak]", GridBox[{
7051         {
7052          FormBox[
7053           OverscriptBox["t", "\<\"-\"\>"],
7054           TraditionalForm], "1"},
7055         {"t", "2"},
7056         {"S0", "3"}
7057        },
7058        GridBoxAlignment->{
7059         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
7060          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
7061        GridBoxSpacings->{"Columns" -> {
7062            Offset[0.27999999999999997`], {
7063             Offset[0.7]},
7064            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
7065          "Rows" -> {
7066            Offset[0.2], {
7067             Offset[0.4]},
7068            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7069      RowBox[{"\[ImaginaryI]", " ",
7070       FormBox[
7071        SubscriptBox["\[Delta]",
7072         RowBox[{
7073          FormBox[
7074           SubscriptBox["\<\"m\"\>", "1"],
7075           TraditionalForm], ",",
7076          FormBox[
7077           SubscriptBox["\<\"m\"\>", "2"],
7078           TraditionalForm]}]],
7079        TraditionalForm], " ",
7080       FormBox[
7081        SubscriptBox["\[Delta]",
7082         RowBox[{
7083          FormBox[
7084           SubscriptBox["\<\"s\"\>", "1"],
7085           TraditionalForm], ",",
7086          FormBox[
7087           SubscriptBox["\<\"s\"\>", "2"],
7088           TraditionalForm]}]],
7089        TraditionalForm]}]}
7090    },
7091    GridBoxAlignment->{
7092     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
7093      "RowsIndexed" -> {}},
7094    GridBoxSpacings->{"Columns" -> {
7095        Offset[0.27999999999999997`], {
7096         Offset[0.7]},
7097        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
7098        Offset[0.2], {
7099         Offset[0.4]},
7100        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7101  TraditionalForm]], "Output",
7102 CellChangeTimes->{{3.577437031183752*^9, 3.577437058068808*^9}, {
7103   3.577437103096621*^9, 3.577437145672617*^9}, 3.577438696280087*^9}],
7104
7105Cell[CellGroupData[{
7106
7107Cell[BoxData[
7108 FormBox[
7109  StyleBox["\<\"Starting Feynman rule calculation.\"\>",
7110   StripOnInput->False,
7111   LineColor->RGBColor[1, 0.5, 0],
7112   FrontFaceColor->RGBColor[1, 0.5, 0],
7113   BackFaceColor->RGBColor[1, 0.5, 0],
7114   GraphicsColor->RGBColor[1, 0.5, 0],
7115   FontWeight->Bold,
7116   FontColor->RGBColor[1, 0.5, 0]], TraditionalForm]], "Print",
7117 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7118   3.577437103045848*^9, 3.57743713992177*^9, 3.577438696281473*^9}],
7119
7120Cell[BoxData[
7121 FormBox["\<\"Expanding the Lagrangian...\"\>", TraditionalForm]], "Print",
7122 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7123   3.577437103045848*^9, 3.57743713992177*^9, 3.577438696282248*^9}],
7124
7125Cell[BoxData[
7126 FormBox["\<\"Collecting the different structures that enter the vertex.\"\>",
7127   TraditionalForm]], "Print",
7128 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7129   3.577437103045848*^9, 3.57743713992177*^9, 3.577438696283724*^9}],
7130
7131Cell[BoxData[
7132 FormBox[
7133  InterpretationBox[
7134   RowBox[{
7135   "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
7136-> starting the computation: \"\>", "\[InvisibleSpace]",
7137    DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, TraditionalForm],
7138     ImageSizeCache->{6., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7139    "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
7140   SequenceForm[
7141   1, " possible non-zero vertices have been found -> starting the \
7142computation: ",
7143    Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
7144   Editable->False], TraditionalForm]], "Print",
7145 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7146   3.577437103045848*^9, 3.57743713992177*^9, 3.5774386962860327`*^9}],
7147
7148Cell[BoxData[
7149 FormBox["\<\"1 vertex obtained.\"\>", TraditionalForm]], "Print",
7150 CellChangeTimes->{{3.577437031096184*^9, 3.577437043016522*^9},
7151   3.577437103045848*^9, 3.57743713992177*^9, 3.577438696287752*^9}]
7152}, Closed]],
7153
7154Cell[BoxData[
7155 FormBox[
7156  RowBox[{"(", "\[NoBreak]", GridBox[{
7157     {
7158      RowBox[{"(", "\[NoBreak]", GridBox[{
7159         {
7160          FormBox[
7161           OverscriptBox["t", "\<\"-\"\>"],
7162           TraditionalForm], "1"},
7163         {"t", "2"},
7164         {"S0", "3"}
7165        },
7166        GridBoxAlignment->{
7167         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
7168          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
7169        GridBoxSpacings->{"Columns" -> {
7170            Offset[0.27999999999999997`], {
7171             Offset[0.7]},
7172            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
7173          "Rows" -> {
7174            Offset[0.2], {
7175             Offset[0.4]},
7176            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7177      RowBox[{
7178       RowBox[{"-",
7179        FormBox[
7180         SubsuperscriptBox["\[Gamma]",
7181          RowBox[{
7182           FormBox[
7183            SubscriptBox["\<\"s\"\>", "1"],
7184            TraditionalForm], ",",
7185           FormBox[
7186            SubscriptBox["\<\"s\"\>", "2"],
7187            TraditionalForm]}], "5"],
7188         TraditionalForm]}], " ",
7189       FormBox[
7190        SubscriptBox["\[Delta]",
7191         RowBox[{
7192          FormBox[
7193           SubscriptBox["\<\"m\"\>", "1"],
7194           TraditionalForm], ",",
7195          FormBox[
7196           SubscriptBox["\<\"m\"\>", "2"],
7197           TraditionalForm]}]],
7198        TraditionalForm]}]}
7199    },
7200    GridBoxAlignment->{
7201     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
7202      "RowsIndexed" -> {}},
7203    GridBoxSpacings->{"Columns" -> {
7204        Offset[0.27999999999999997`], {
7205         Offset[0.7]},
7206        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
7207        Offset[0.2], {
7208         Offset[0.4]},
7209        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7210  TraditionalForm]], "Output",
7211 CellChangeTimes->{{3.577437031183752*^9, 3.577437058068808*^9}, {
7212   3.577437103096621*^9, 3.577437145672617*^9}, 3.577438696290434*^9}]
7213}, Open  ]],
7214
7215Cell[CellGroupData[{
7216
7217Cell[BoxData[
7218 RowBox[{"FeynmanRules", "[",
7219  RowBox[{"LSM", ",", " ",
7220   RowBox[{"Contains", "\[Rule]",
7221    RowBox[{"{",
7222     RowBox[{"uq", ",", " ", "uqbar", ",", " ", "G"}], "}"}]}], ",", " ",
7223   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]], "Input",
7224 CellChangeTimes->{{3.577436140219532*^9, 3.577436170202025*^9}, {
7225  3.577436222937742*^9, 3.577436283058028*^9}, {3.57743639503568*^9,
7226  3.5774364490658903`*^9}}],
7227
7228Cell[CellGroupData[{
7229
7230Cell[BoxData[
7231 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
7232  StripOnInput->False,
7233  LineColor->RGBColor[1, 0.5, 0],
7234  FrontFaceColor->RGBColor[1, 0.5, 0],
7235  BackFaceColor->RGBColor[1, 0.5, 0],
7236  GraphicsColor->RGBColor[1, 0.5, 0],
7237  FontWeight->Bold,
7238  FontColor->RGBColor[1, 0.5, 0]]], "Print",
7239 CellChangeTimes->{{3.577436235772636*^9, 3.5774362854183607`*^9},
7240   3.577436398917313*^9, {3.577436431468766*^9, 3.577436451249983*^9}}],
7241
7242Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
7243 CellChangeTimes->{{3.577436235772636*^9, 3.5774362854183607`*^9},
7244   3.577436398917313*^9, {3.577436431468766*^9, 3.577436451251114*^9}}],
7245
7246Cell[BoxData[
7247 InterpretationBox[
7248  RowBox[{"\<\"Expansion of indices distributed over \"\>",
7249   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
7250  SequenceForm["Expansion of indices distributed over ", 2, " kernels."],
7251  Editable->False]], "Print",
7252 CellChangeTimes->{{3.577436235772636*^9, 3.5774362854183607`*^9},
7253   3.577436398917313*^9, {3.577436431468766*^9, 3.577436451252626*^9}}],
7254
7255Cell[BoxData["\<\"Collecting the different structures that enter the \
7256vertex.\"\>"], "Print",
7257 CellChangeTimes->{{3.577436235772636*^9, 3.5774362854183607`*^9},
7258   3.577436398917313*^9, {3.577436431468766*^9, 3.577436452964484*^9}}],
7259
7260Cell[BoxData[
7261 InterpretationBox[
7262  RowBox[{
7263  "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
7264-> starting the computation: \"\>", "\[InvisibleSpace]",
7265   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
7266    ImageSizeCache->{7., {0., 7.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7267   "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
7268  SequenceForm[
7269  1, " possible non-zero vertices have been found -> starting the \
7270computation: ",
7271   Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
7272  Editable->False]], "Print",
7273 CellChangeTimes->{{3.577436235772636*^9, 3.5774362854183607`*^9},
7274   3.577436398917313*^9, {3.577436431468766*^9, 3.5774364529668713`*^9}}],
7275
7276Cell[BoxData["\<\"1 vertex obtained.\"\>"], "Print",
7277 CellChangeTimes->{{3.577436235772636*^9, 3.5774362854183607`*^9},
7278   3.577436398917313*^9, {3.577436431468766*^9, 3.577436453037846*^9}}]
7279}, Closed]],
7280
7281Cell[BoxData[
7282 FormBox[
7283  RowBox[{"(", "\[NoBreak]", GridBox[{
7284     {
7285      RowBox[{"(", "\[NoBreak]", GridBox[{
7286         {
7287          OverscriptBox["uq", "\<\"-\"\>"], "1"},
7288         {"uq", "2"},
7289         {"G", "3"}
7290        },
7291        GridBoxAlignment->{
7292         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
7293          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
7294        GridBoxSpacings->{"Columns" -> {
7295            Offset[0.27999999999999997`], {
7296             Offset[0.7]},
7297            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
7298          "Rows" -> {
7299            Offset[0.2], {
7300             Offset[0.4]},
7301            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7302      RowBox[{"\[ImaginaryI]", " ",
7303       SubscriptBox["g", "s"], " ",
7304       SubsuperscriptBox["\[Gamma]",
7305        RowBox[{
7306         SubscriptBox["\<\"s\"\>", "1"], ",",
7307         SubscriptBox["\<\"s\"\>", "2"]}],
7308        SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
7309       SubscriptBox["\[Delta]",
7310        RowBox[{
7311         SubscriptBox["\<\"f\"\>", "1"], ",",
7312         SubscriptBox["\<\"f\"\>", "2"]}]], " ",
7313       SubsuperscriptBox["T",
7314        RowBox[{
7315         SubscriptBox["\<\"m\"\>", "1"], ",",
7316         SubscriptBox["\<\"m\"\>", "2"]}],
7317        SubscriptBox["\<\"a\"\>", "3"]]}]}
7318    },
7319    GridBoxAlignment->{
7320     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
7321      "RowsIndexed" -> {}},
7322    GridBoxSpacings->{"Columns" -> {
7323        Offset[0.27999999999999997`], {
7324         Offset[0.7]},
7325        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
7326        Offset[0.2], {
7327         Offset[0.4]},
7328        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7329  TraditionalForm]], "Output",
7330 CellChangeTimes->{{3.577436241656002*^9, 3.577436287729786*^9},
7331   3.57743640106925*^9, {3.5774364333231993`*^9, 3.5774364609983873`*^9}}]
7332}, Open  ]]
7333}, Open  ]],
7334
7335Cell[CellGroupData[{
7336
7337Cell["The effective vertex", "Subsubtitle",
7338 CellChangeTimes->{{3.577438714873914*^9, 3.577438738087105*^9}}],
7339
7340Cell[CellGroupData[{
7341
7342Cell[BoxData[
7343 RowBox[{"FeynmanRules", "[",
7344  RowBox[{
7345   RowBox[{"S0", " ",
7346    RowBox[{"FS", "[",
7347     RowBox[{"G", ",", " ", "mu", ",", " ", "nu", ",", " ", "aa"}], "]"}],
7348    " ",
7349    RowBox[{"FS", "[",
7350     RowBox[{"G", ",", " ", "mu", ",", " ", "nu", ",", " ", "aa"}], "]"}]}],
7351   ",", " ",
7352   RowBox[{"MaxParticles", "\[Rule]", "3"}], ",", " ",
7353   RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]], "Input",
7354 CellChangeTimes->{{3.577434628324563*^9, 3.577434634040144*^9}, {
7355  3.577435921240918*^9, 3.577435979737751*^9}, {3.5774360114998417`*^9,
7356  3.5774360187956123`*^9}, {3.577436614028335*^9, 3.577436618011897*^9}}],
7357
7358Cell[CellGroupData[{
7359
7360Cell[BoxData[
7361 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
7362  StripOnInput->False,
7363  LineColor->RGBColor[1, 0.5, 0],
7364  FrontFaceColor->RGBColor[1, 0.5, 0],
7365  BackFaceColor->RGBColor[1, 0.5, 0],
7366  GraphicsColor->RGBColor[1, 0.5, 0],
7367  FontWeight->Bold,
7368  FontColor->RGBColor[1, 0.5, 0]]], "Print",
7369 CellChangeTimes->{
7370  3.5774359649055023`*^9, {3.5774359950779*^9, 3.577436019268713*^9},
7371   3.577436618815551*^9}],
7372
7373Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
7374 CellChangeTimes->{
7375  3.5774359649055023`*^9, {3.5774359950779*^9, 3.577436019268713*^9},
7376   3.5774366188430023`*^9}],
7377
7378Cell[BoxData[
7379 InterpretationBox[
7380  RowBox[{"\<\"Neglecting all terms with more than \"\>",
7381   "\[InvisibleSpace]", "\<\"3\"\>",
7382   "\[InvisibleSpace]", "\<\" particles.\"\>"}],
7383  SequenceForm["Neglecting all terms with more than ", "3", " particles."],
7384  Editable->False]], "Print",
7385 CellChangeTimes->{
7386  3.5774359649055023`*^9, {3.5774359950779*^9, 3.577436019268713*^9},
7387   3.577436618915147*^9}],
7388
7389Cell[BoxData["\<\"Collecting the different structures that enter the \
7390vertex.\"\>"], "Print",
7391 CellChangeTimes->{
7392  3.5774359649055023`*^9, {3.5774359950779*^9, 3.577436019268713*^9},
7393   3.577436618916609*^9}],
7394
7395Cell[BoxData[
7396 InterpretationBox[
7397  RowBox[{
7398  "1", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
7399-> starting the computation: \"\>", "\[InvisibleSpace]",
7400   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
7401    ImageSizeCache->{7., {0., 7.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7402   "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\".\"\>"}],
7403  SequenceForm[
7404  1, " possible non-zero vertices have been found -> starting the \
7405computation: ",
7406   Dynamic[FeynRules`FR$FeynmanRules], " / ", 1, "."],
7407  Editable->False]], "Print",
7408 CellChangeTimes->{
7409  3.5774359649055023`*^9, {3.5774359950779*^9, 3.577436019268713*^9},
7410   3.57743661891868*^9}],
7411
7412Cell[BoxData["\<\"1 vertex obtained.\"\>"], "Print",
7413 CellChangeTimes->{
7414  3.5774359649055023`*^9, {3.5774359950779*^9, 3.577436019268713*^9},
7415   3.577436618920261*^9}]
7416}, Closed]],
7417
7418Cell[BoxData[
7419 FormBox[
7420  RowBox[{"(", "\[NoBreak]", GridBox[{
7421     {
7422      RowBox[{"(", "\[NoBreak]", GridBox[{
7423         {"G", "1"},
7424         {"G", "2"},
7425         {"S0", "3"}
7426        },
7427        GridBoxAlignment->{
7428         "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
7429          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
7430        GridBoxSpacings->{"Columns" -> {
7431            Offset[0.27999999999999997`], {
7432             Offset[0.7]},
7433            Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
7434          "Rows" -> {
7435            Offset[0.2], {
7436             Offset[0.4]},
7437            Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7438      RowBox[{
7439       RowBox[{"4", " ", "\[ImaginaryI]", " ",
7440        SubsuperscriptBox["\<\"p\"\>", "1",
7441         SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
7442        SubsuperscriptBox["\<\"p\"\>", "2",
7443         SubscriptBox["\<\"\[Mu]\"\>", "1"]], " ",
7444        SubscriptBox["\[Delta]",
7445         RowBox[{
7446          SubscriptBox["\<\"a\"\>", "1"], ",",
7447          SubscriptBox["\<\"a\"\>", "2"]}]]}], "-",
7448       RowBox[{"4", " ", "\[ImaginaryI]", " ",
7449        SubscriptBox["\[Delta]",
7450         RowBox[{
7451          SubscriptBox["\<\"a\"\>", "1"], ",",
7452          SubscriptBox["\<\"a\"\>", "2"]}]], " ",
7453        SubscriptBox["\[Eta]",
7454         RowBox[{
7455          SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
7456          SubscriptBox["\<\"\[Mu]\"\>", "2"]}]], " ",
7457        RowBox[{
7458         SubscriptBox["\<\"p\"\>", "1"], ".",
7459         SubscriptBox["p", "2"]}]}]}]}
7460    },
7461    GridBoxAlignment->{
7462     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
7463      "RowsIndexed" -> {}},
7464    GridBoxSpacings->{"Columns" -> {
7465        Offset[0.27999999999999997`], {
7466         Offset[0.7]},
7467        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
7468        Offset[0.2], {
7469         Offset[0.4]},
7470        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7471  TraditionalForm]], "Output",
7472 CellChangeTimes->{
7473  3.577434635061796*^9, 3.577435964979323*^9, {3.577435995571294*^9,
7474   3.577436024808703*^9}, {3.5774366189222813`*^9, 3.577436628951249*^9}}]
7475}, Open  ]]
7476}, Open  ]]
7477}, Closed]],
7478
7479Cell[CellGroupData[{
7480
7481Cell["Addendum: Calculating the widths", "Subtitle",
7482 CellChangeTimes->{{3.5770015670858307`*^9, 3.577001615471738*^9}, {
7483  3.577009421089899*^9, 3.577009421921103*^9}}],
7484
7485Cell["For S0", "Text",
7486 CellChangeTimes->{{3.5791754426219273`*^9, 3.579175451816486*^9}}],
7487
7488Cell[BoxData[
7489 RowBox[{"UpdateParameters", "[",
7490  RowBox[{"s0axial", "\[Rule]", "1"}], "]"}]], "Input",
7491 CellChangeTimes->{{3.583231325950224*^9, 3.583231340584877*^9}, {
7492  3.583232748809801*^9, 3.5832327492939053`*^9}}],
7493
7494Cell[CellGroupData[{
7495
7496Cell[BoxData[
7497 RowBox[{"NumericalValue", "[", "WS0", "]"}]], "Input",
7498 CellChangeTimes->{{3.578918397273728*^9, 3.5789184069674177`*^9}}],
7499
7500Cell[BoxData["14.985750688914285`"], "Output",
7501 CellChangeTimes->{
7502  3.578918407348998*^9, 3.579174965220076*^9, 3.5791751276539*^9,
7503   3.5832313425384817`*^9, {3.583231472358139*^9, 3.583231481158032*^9},
7504   3.583231761606271*^9, 3.58323188823004*^9, 3.583231986534486*^9,
7505   3.583232751014204*^9}]
7506}, Open  ]],
7507
7508Cell[CellGroupData[{
7509
7510Cell[BoxData[{
7511 RowBox[{
7512  RowBox[{"myverts", " ", "=",
7513   RowBox[{"FeynmanRules", "[",
7514    RowBox[{
7515     RowBox[{"LS0", "/.", "dummies"}], ",", " ",
7516     RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]}],
7517  ";"}], "\[IndentingNewLine]",
7518 RowBox[{
7519  RowBox[{"myexpanded", " ", "=", " ",
7520   RowBox[{"FlavorExpansion", "[", "myverts", "]"}]}],
7521  ";"}], "\[IndentingNewLine]",
7522 RowBox[{
7523  RowBox[{"CalculateM2Decays", "[", "myexpanded", "]"}],
7524  ";"}], "\[IndentingNewLine]",
7525 RowBox[{"mydecays", " ", "=", " ",
7526  RowBox[{"ComputeDecays", "[",
7527   RowBox[{"%", ",", " ",
7528    RowBox[{"Simplify", "\[Rule]", "True"}]}], "]"}]}]}], "Input",
7529 CellChangeTimes->{{3.576998965860227*^9, 3.576999017553656*^9}, {
7530  3.5769990526799383`*^9, 3.576999054972035*^9}, {3.576999475688168*^9,
7531  3.576999476051052*^9}, {3.577001655222089*^9, 3.577001667599221*^9}, {
7532  3.57701137739784*^9, 3.577011377653968*^9}, {3.578137294614687*^9,
7533  3.578137299077929*^9}}],
7534
7535Cell[CellGroupData[{
7536
7537Cell[BoxData[
7538 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
7539  StripOnInput->False,
7540  LineColor->RGBColor[1, 0.5, 0],
7541  FrontFaceColor->RGBColor[1, 0.5, 0],
7542  BackFaceColor->RGBColor[1, 0.5, 0],
7543  GraphicsColor->RGBColor[1, 0.5, 0],
7544  FontWeight->Bold,
7545  FontColor->RGBColor[1, 0.5, 0]]], "Print",
7546 CellChangeTimes->{
7547  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7548   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7549   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7550   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7551   3.579175129030064*^9, {3.58323284012113*^9, 3.5832328613520327`*^9}}],
7552
7553Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
7554 CellChangeTimes->{
7555  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7556   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7557   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7558   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7559   3.579175129030064*^9, {3.58323284012113*^9, 3.58323286138828*^9}}],
7560
7561Cell[BoxData["\<\"Collecting the different structures that enter the \
7562vertex.\"\>"], "Print",
7563 CellChangeTimes->{
7564  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7565   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7566   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7567   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7568   3.579175129030064*^9, {3.58323284012113*^9, 3.583232861675119*^9}}],
7569
7570Cell[BoxData[
7571 InterpretationBox[
7572  RowBox[{
7573  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
7574-> starting the computation: \"\>", "\[InvisibleSpace]",
7575   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
7576    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7577   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
7578  SequenceForm[
7579  4, " possible non-zero vertices have been found -> starting the \
7580computation: ",
7581   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
7582  Editable->False]], "Print",
7583 CellChangeTimes->{
7584  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7585   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7586   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7587   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7588   3.579175129030064*^9, {3.58323284012113*^9, 3.583232861726787*^9}}],
7589
7590Cell[BoxData[
7591 InterpretationBox[
7592  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
7593  SequenceForm[4, " vertices obtained."],
7594  Editable->False]], "Print",
7595 CellChangeTimes->{
7596  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7597   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7598   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7599   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7600   3.579175129030064*^9, {3.58323284012113*^9, 3.5832328626921673`*^9}}],
7601
7602Cell[BoxData[
7603 InterpretationBox[
7604  RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
7605   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
7606  SequenceForm[
7607  "Flavor expansion of the vertices distributed over ", 2, " kernels."],
7608  Editable->False]], "Print",
7609 CellChangeTimes->{
7610  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7611   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7612   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7613   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7614   3.579175129030064*^9, {3.58323284012113*^9, 3.58323286275844*^9}}],
7615
7616Cell[BoxData[
7617 StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
7618decays: \"\>",
7619  StripOnInput->False,
7620  LineColor->RGBColor[1, 0.5, 0],
7621  FrontFaceColor->RGBColor[1, 0.5, 0],
7622  BackFaceColor->RGBColor[1, 0.5, 0],
7623  GraphicsColor->RGBColor[1, 0.5, 0],
7624  FontWeight->Bold,
7625  FontColor->RGBColor[1, 0.5, 0]]], "Print",
7626 CellChangeTimes->{
7627  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7628   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7629   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7630   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7631   3.579175129030064*^9, {3.58323284012113*^9, 3.583232863119185*^9}}],
7632
7633Cell[BoxData[
7634 InterpretationBox[
7635  RowBox[{
7636   DynamicBox[ToBoxes[FeynRules`FR$DecayCounter, StandardForm],
7637    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7638   "\[InvisibleSpace]", "2"}],
7639  SequenceForm[
7640   Dynamic[FeynRules`FR$DecayCounter], " / ", 2],
7641  Editable->False]], "Print",
7642 CellChangeTimes->{
7643  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7644   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7645   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7646   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7647   3.579175129030064*^9, {3.58323284012113*^9, 3.5832328631213293`*^9}}],
7648
7649Cell[BoxData[
7650 InterpretationBox[
7651  RowBox[{
7652   StyleBox["\<\"Computing all the partial 1->2 decay widths: \"\>",
7653    StripOnInput->False,
7654    LineColor->RGBColor[1, 0.5, 0],
7655    FrontFaceColor->RGBColor[1, 0.5, 0],
7656    BackFaceColor->RGBColor[1, 0.5, 0],
7657    GraphicsColor->RGBColor[1, 0.5, 0],
7658    FontWeight->Bold,
7659    FontColor->RGBColor[1, 0.5, 0]], "\[InvisibleSpace]",
7660   DynamicBox[ToBoxes[FeynRules`FR$DecayCntb, StandardForm],
7661    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7662   "\[InvisibleSpace]", "2"}],
7663  SequenceForm[
7664   Style["Computing all the partial 1->2 decay widths: ",
7665    RGBColor[1, 0.5, 0], Bold],
7666   Dynamic[FeynRules`FR$DecayCntb], " / ", 2],
7667  Editable->False]], "Print",
7668 CellChangeTimes->{
7669  3.576999019584539*^9, 3.576999056040906*^9, 3.576999476583143*^9,
7670   3.577001668394505*^9, 3.5770046035159197`*^9, 3.577009425086978*^9,
7671   3.577011563705009*^9, 3.578137033714571*^9, 3.578137299715431*^9,
7672   3.578138886642433*^9, {3.5791749668497677`*^9, 3.579174987818643*^9},
7673   3.579175129030064*^9, {3.58323284012113*^9, 3.583232863949643*^9}}]
7674}, Closed]],
7675
7676Cell[BoxData[
7677 FormBox[
7678  RowBox[{"(", "\[NoBreak]", GridBox[{
7679     {
7680      RowBox[{"{",
7681       RowBox[{"S0", ",", "G", ",", "G"}], "}"}],
7682      FractionBox[
7683       RowBox[{
7684        SuperscriptBox["MS0", "6"], " ", "s0fs", " ",
7685        SuperscriptBox["s0fs", "\<\"*\"\>"]}],
7686       RowBox[{"8", " ", "\[Pi]", " ",
7687        SuperscriptBox[
7688         TemplateBox[{"MS0"},
7689          "Abs"], "3"]}]]},
7690     {
7691      RowBox[{"{",
7692       RowBox[{"S0", ",", "t", ",",
7693        OverscriptBox["t", "\<\"-\"\>"]}], "}"}],
7694      FractionBox[
7695       RowBox[{"3", " ",
7696        SuperscriptBox["MT", "2"], " ",
7697        SqrtBox[
7698         RowBox[{
7699          SuperscriptBox["MS0", "4"], "-",
7700          RowBox[{"4", " ",
7701           SuperscriptBox["MS0", "2"], " ",
7702           SuperscriptBox["MT", "2"]}]}]], " ",
7703        RowBox[{"(",
7704         RowBox[{
7705          RowBox[{
7706           SuperscriptBox["MS0", "2"], " ",
7707           RowBox[{"(",
7708            RowBox[{
7709             SubsuperscriptBox["s0", "axial", "2"], "+",
7710             SubsuperscriptBox["s0", "scalar", "2"]}], ")"}]}], "-",
7711          RowBox[{"4", " ",
7712           SuperscriptBox["MT", "2"], " ",
7713           SubsuperscriptBox["s0", "scalar", "2"]}]}], ")"}]}],
7714       RowBox[{"8", " ", "\[Pi]", " ",
7715        SuperscriptBox["vev", "2"], " ",
7716        SuperscriptBox[
7717         TemplateBox[{"MS0"},
7718          "Abs"], "3"]}]]}
7719    },
7720    GridBoxAlignment->{
7721     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
7722      "RowsIndexed" -> {}},
7723    GridBoxSpacings->{"Columns" -> {
7724        Offset[0.27999999999999997`], {
7725         Offset[0.7]},
7726        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
7727        Offset[0.2], {
7728         Offset[0.4]},
7729        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7730  TraditionalForm]], "Output",
7731 CellChangeTimes->{
7732  3.577011580803955*^9, 3.578137040257702*^9, 3.57813730239128*^9, {
7733   3.578138889230557*^9, 3.578138916488226*^9}, {3.579174967108127*^9,
7734   3.579174997862258*^9}, 3.579175131605567*^9, 3.579175291781025*^9, {
7735   3.583232842829751*^9, 3.583232868250516*^9}}]
7736}, Open  ]],
7737
7738Cell["For O0", "Text",
7739 CellChangeTimes->{{3.5791754426219273`*^9, 3.579175462856036*^9}}],
7740
7741Cell[CellGroupData[{
7742
7743Cell[BoxData[
7744 RowBox[{"NumericalValue", "[", "WO0", "]"}]], "Input",
7745 CellChangeTimes->{{3.578918397273728*^9, 3.578918421703477*^9}, {
7746  3.579175012342449*^9, 3.579175022466405*^9}}],
7747
7748Cell[BoxData["2.4976251148190465`"], "Output",
7749 CellChangeTimes->{
7750  3.578918422133093*^9, 3.579175270519444*^9, {3.579509028489615*^9,
7751   3.5795090499937*^9}, 3.579523381872311*^9, 3.579597136346609*^9,
7752   3.5832313699739857`*^9, 3.583231494529172*^9, 3.583231765056147*^9,
7753   3.583231894150034*^9}]
7754}, Open  ]],
7755
7756Cell[CellGroupData[{
7757
7758Cell[BoxData[{
7759 RowBox[{
7760  RowBox[{"myverts", " ", "=",
7761   RowBox[{"FeynmanRules", "[",
7762    RowBox[{
7763     RowBox[{"LO0", "/.", "dummies"}], ",", " ",
7764     RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]}],
7765  ";"}], "\[IndentingNewLine]",
7766 RowBox[{
7767  RowBox[{"myexpanded", " ", "=", " ",
7768   RowBox[{"FlavorExpansion", "[", "myverts", "]"}]}],
7769  ";"}], "\[IndentingNewLine]",
7770 RowBox[{
7771  RowBox[{"CalculateM2Decays", "[", "myexpanded", "]"}],
7772  ";"}], "\[IndentingNewLine]",
7773 RowBox[{"mydecays", " ", "=", " ",
7774  RowBox[{"ComputeDecays", "[",
7775   RowBox[{"%", ",", " ",
7776    RowBox[{"Simplify", "\[Rule]", "True"}]}], "]"}]}]}], "Input",
7777 CellChangeTimes->{{3.576998965860227*^9, 3.576999017553656*^9}, {
7778  3.5769990526799383`*^9, 3.576999054972035*^9}, {3.576999475688168*^9,
7779  3.576999476051052*^9}, {3.577001655222089*^9, 3.577001667599221*^9}, {
7780  3.57701137739784*^9, 3.577011377653968*^9}, {3.578137294614687*^9,
7781  3.578137299077929*^9}, {3.578384384391281*^9, 3.578384384759079*^9}}],
7782
7783Cell[CellGroupData[{
7784
7785Cell[BoxData[
7786 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
7787  StripOnInput->False,
7788  LineColor->RGBColor[1, 0.5, 0],
7789  FrontFaceColor->RGBColor[1, 0.5, 0],
7790  BackFaceColor->RGBColor[1, 0.5, 0],
7791  GraphicsColor->RGBColor[1, 0.5, 0],
7792  FontWeight->Bold,
7793  FontColor->RGBColor[1, 0.5, 0]]], "Print",
7794 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7795   3.579175272057065*^9}],
7796
7797Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
7798 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7799   3.5791752720824747`*^9}],
7800
7801Cell[BoxData["\<\"Collecting the different structures that enter the \
7802vertex.\"\>"], "Print",
7803 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7804   3.579175272518362*^9}],
7805
7806Cell[BoxData[
7807 InterpretationBox[
7808  RowBox[{
7809  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
7810-> starting the computation: \"\>", "\[InvisibleSpace]",
7811   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
7812    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7813   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
7814  SequenceForm[
7815  4, " possible non-zero vertices have been found -> starting the \
7816computation: ",
7817   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
7818  Editable->False]], "Print",
7819 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7820   3.579175272570116*^9}],
7821
7822Cell[BoxData[
7823 InterpretationBox[
7824  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
7825  SequenceForm[4, " vertices obtained."],
7826  Editable->False]], "Print",
7827 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7828   3.579175274400632*^9}],
7829
7830Cell[BoxData[
7831 InterpretationBox[
7832  RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
7833   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
7834  SequenceForm[
7835  "Flavor expansion of the vertices distributed over ", 2, " kernels."],
7836  Editable->False]], "Print",
7837 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7838   3.579175274484627*^9}],
7839
7840Cell[BoxData[
7841 InterpretationBox[
7842  RowBox[{
7843   StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
7844decays: \"\>",
7845    StripOnInput->False,
7846    LineColor->RGBColor[1, 0.5, 0],
7847    FrontFaceColor->RGBColor[1, 0.5, 0],
7848    BackFaceColor->RGBColor[1, 0.5, 0],
7849    GraphicsColor->RGBColor[1, 0.5, 0],
7850    FontWeight->Bold,
7851    FontColor->RGBColor[1, 0.5, 0]], "\[InvisibleSpace]",
7852   DynamicBox[ToBoxes[FeynRules`FR$DecayCounter, StandardForm],
7853    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7854   "\[InvisibleSpace]", "2"}],
7855  SequenceForm[
7856   Style["Computing the squared matrix elements relevant for the 1->2 decays: \
7857",
7858    RGBColor[1, 0.5, 0], Bold],
7859   Dynamic[FeynRules`FR$DecayCounter], " / ", 2],
7860  Editable->False]], "Print",
7861 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7862   3.579175274918192*^9}],
7863
7864Cell[BoxData[
7865 InterpretationBox[
7866  RowBox[{
7867   StyleBox["\<\"Computing all the partial 1->2 decay widths: \"\>",
7868    StripOnInput->False,
7869    LineColor->RGBColor[1, 0.5, 0],
7870    FrontFaceColor->RGBColor[1, 0.5, 0],
7871    BackFaceColor->RGBColor[1, 0.5, 0],
7872    GraphicsColor->RGBColor[1, 0.5, 0],
7873    FontWeight->Bold,
7874    FontColor->RGBColor[1, 0.5, 0]], "\[InvisibleSpace]",
7875   DynamicBox[ToBoxes[FeynRules`FR$DecayCntb, StandardForm],
7876    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
7877   "\[InvisibleSpace]", "2"}],
7878  SequenceForm[
7879   Style["Computing all the partial 1->2 decay widths: ",
7880    RGBColor[1, 0.5, 0], Bold],
7881   Dynamic[FeynRules`FR$DecayCntb], " / ", 2],
7882  Editable->False]], "Print",
7883 CellChangeTimes->{{3.578384385759063*^9, 3.57838440426084*^9},
7884   3.579175275264614*^9}]
7885}, Closed]],
7886
7887Cell[BoxData[
7888 RowBox[{
7889  StyleBox[
7890   RowBox[{"Decay", "::", "Overwrite"}], "MessageName"],
7891  RowBox[{
7892  ":", " "}], "\<\"Warning: Previous results will be overwritten.\"\>"}]], \
7893"Message", "MSG",
7894 CellChangeTimes->{3.579175275414173*^9}],
7895
7896Cell[BoxData[
7897 FormBox[
7898  RowBox[{"(", "\[NoBreak]", GridBox[{
7899     {
7900      RowBox[{"{",
7901       RowBox[{"O0", ",", "G", ",", "G"}], "}"}],
7902      FractionBox[
7903       RowBox[{
7904        SuperscriptBox["MO0", "6"], " ", "o0fs", " ",
7905        SuperscriptBox["o0fs", "\<\"*\"\>"], " ",
7906        SubsuperscriptBox["dSUN",
7907         RowBox[{
7908          SubscriptBox["\<\"a\"\>", "2"], ",",
7909          SubscriptBox["\<\"a\"\>", "3"], ",",
7910          SubscriptBox["\<\"a\"\>", "1"]}], "2"]}],
7911       RowBox[{"512", " ", "\[Pi]", " ",
7912        SuperscriptBox[
7913         TemplateBox[{"MO0"},
7914          "Abs"], "3"]}]]},
7915     {
7916      RowBox[{"{",
7917       RowBox[{"O0", ",", "t", ",",
7918        OverscriptBox["t", "\<\"-\"\>"]}], "}"}],
7919      FractionBox[
7920       RowBox[{
7921        SuperscriptBox["MT", "2"], " ",
7922        SqrtBox[
7923         RowBox[{
7924          SuperscriptBox["MO0", "4"], "-",
7925          RowBox[{"4", " ",
7926           SuperscriptBox["MO0", "2"], " ",
7927           SuperscriptBox["MT", "2"]}]}]], " ",
7928        RowBox[{"(",
7929         RowBox[{
7930          RowBox[{
7931           SuperscriptBox["MO0", "2"], " ",
7932           RowBox[{"(",
7933            RowBox[{
7934             SubsuperscriptBox["o0", "axial", "2"], "+",
7935             SubsuperscriptBox["o0", "scalar", "2"]}], ")"}]}], "-",
7936          RowBox[{"4", " ",
7937           SuperscriptBox["MT", "2"], " ",
7938           SubsuperscriptBox["o0", "scalar", "2"]}]}], ")"}]}],
7939       RowBox[{"16", " ", "\[Pi]", " ",
7940        SuperscriptBox["vev", "2"], " ",
7941        SuperscriptBox[
7942         TemplateBox[{"MO0"},
7943          "Abs"], "3"]}]]}
7944    },
7945    GridBoxAlignment->{
7946     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
7947      "RowsIndexed" -> {}},
7948    GridBoxSpacings->{"Columns" -> {
7949        Offset[0.27999999999999997`], {
7950         Offset[0.7]},
7951        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
7952        Offset[0.2], {
7953         Offset[0.4]},
7954        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
7955  TraditionalForm]], "Output",
7956 CellChangeTimes->{{3.5783843860514507`*^9, 3.578384407374316*^9},
7957   3.578384447468309*^9, {3.579175275416415*^9, 3.57917528560285*^9}}]
7958}, Open  ]],
7959
7960Cell[CellGroupData[{
7961
7962Cell[BoxData[
7963 RowBox[{
7964  RowBox[{"Fold", "[",
7965   RowBox[{
7966    RowBox[{
7967     RowBox[{"#1", "+",
7968      RowBox[{"#2", "[",
7969       RowBox[{"[", "2", "]"}], "]"}]}], "&"}], ",", "0", ",",
7970    RowBox[{"mydecays", "/.",
7971     RowBox[{"{",
7972      RowBox[{
7973       RowBox[{"Abs", "[", "MO0", "]"}], "\[Rule]", "MO0"}], "}"}]}]}], "]"}],
7974   "//", "FullSimplify"}]], "Input",
7975 CellChangeTimes->{{3.579175038781498*^9, 3.579175089628989*^9}, {
7976  3.5791751463646507`*^9, 3.579175147917482*^9}, {3.579175202685326*^9,
7977  3.579175250716889*^9}, {3.579175301997322*^9, 3.5791753047806168`*^9}}],
7978
7979Cell[BoxData[
7980 FormBox[
7981  FractionBox[
7982   RowBox[{
7983    RowBox[{
7984     SuperscriptBox["MO0", "6"], " ", "o0fs", " ",
7985     SuperscriptBox["vev", "2"], " ",
7986     SuperscriptBox["o0fs", "\<\"*\"\>"], " ",
7987     SubsuperscriptBox["dSUN",
7988      RowBox[{
7989       SubscriptBox["\<\"a\"\>", "2"], ",",
7990       SubscriptBox["\<\"a\"\>", "3"], ",",
7991       SubscriptBox["\<\"a\"\>", "1"]}], "2"]}], "+",
7992    RowBox[{"32", " ",
7993     SuperscriptBox["MT", "2"], " ",
7994     SqrtBox[
7995      RowBox[{
7996       SuperscriptBox["MO0", "4"], "-",
7997       RowBox[{"4", " ",
7998        SuperscriptBox["MO0", "2"], " ",
7999        SuperscriptBox["MT", "2"]}]}]], " ",
8000     RowBox[{"(",
8001      RowBox[{
8002       RowBox[{
8003        SuperscriptBox["MO0", "2"], " ",
8004        RowBox[{"(",
8005         RowBox[{
8006          SubsuperscriptBox["o0", "axial", "2"], "+",
8007          SubsuperscriptBox["o0", "scalar", "2"]}], ")"}]}], "-",
8008       RowBox[{"4", " ",
8009        SuperscriptBox["MT", "2"], " ",
8010        SubsuperscriptBox["o0", "scalar", "2"]}]}], ")"}]}]}],
8011   RowBox[{"512", " ", "\[Pi]", " ",
8012    SuperscriptBox["MO0", "3"], " ",
8013    SuperscriptBox["vev", "2"]}]], TraditionalForm]], "Output",
8014 CellChangeTimes->{{3.57917530579452*^9, 3.5791753128656073`*^9}}]
8015}, Open  ]],
8016
8017Cell["For S1", "Text",
8018 CellChangeTimes->{{3.5791754426219273`*^9, 3.5791754697677803`*^9}}],
8019
8020Cell[CellGroupData[{
8021
8022Cell[BoxData[
8023 RowBox[{"NumericalValue", "[", "WS1", "]"}]], "Input",
8024 CellChangeTimes->{{3.578918397273728*^9, 3.578918427479536*^9}}],
8025
8026Cell[BoxData["58.981853821456596`"], "Output",
8027 CellChangeTimes->{
8028  3.578918427941093*^9, 3.5791753222154922`*^9, {3.5832314996838923`*^9,
8029   3.5832315127900476`*^9}, 3.583231896805883*^9}]
8030}, Open  ]],
8031
8032Cell[CellGroupData[{
8033
8034Cell[BoxData[{
8035 RowBox[{
8036  RowBox[{"myverts", " ", "=",
8037   RowBox[{"FeynmanRules", "[",
8038    RowBox[{"LS1", ",", " ",
8039     RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]}],
8040  ";"}], "\[IndentingNewLine]",
8041 RowBox[{
8042  RowBox[{"myexpanded", " ", "=", " ",
8043   RowBox[{"FlavorExpansion", "[", "myverts", "]"}]}],
8044  ";"}], "\[IndentingNewLine]",
8045 RowBox[{
8046  RowBox[{"CalculateM2Decays", "[", "myexpanded", "]"}],
8047  ";"}], "\[IndentingNewLine]",
8048 RowBox[{"mydecays", " ", "=", " ",
8049  RowBox[{"ComputeDecays", "[",
8050   RowBox[{"%", ",", " ",
8051    RowBox[{"Simplify", "\[Rule]", "True"}]}], "]"}]}]}], "Input",
8052 CellChangeTimes->{{3.576998965860227*^9, 3.576999017553656*^9}, {
8053  3.5769990526799383`*^9, 3.576999054972035*^9}, {3.576999475688168*^9,
8054  3.576999476051052*^9}, {3.577001655222089*^9, 3.577001667599221*^9}, {
8055  3.57701137739784*^9, 3.577011377653968*^9}, {3.578137294614687*^9,
8056  3.578137299077929*^9}, {3.578384384391281*^9, 3.578384384759079*^9}, {
8057  3.578915703514648*^9, 3.578915708666231*^9}}],
8058
8059Cell[CellGroupData[{
8060
8061Cell[BoxData[
8062 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
8063  StripOnInput->False,
8064  LineColor->RGBColor[1, 0.5, 0],
8065  FrontFaceColor->RGBColor[1, 0.5, 0],
8066  BackFaceColor->RGBColor[1, 0.5, 0],
8067  GraphicsColor->RGBColor[1, 0.5, 0],
8068  FontWeight->Bold,
8069  FontColor->RGBColor[1, 0.5, 0]]], "Print",
8070 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8071  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8072  3.579175324181158*^9}],
8073
8074Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
8075 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8076  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8077  3.579175324213615*^9}],
8078
8079Cell[BoxData["\<\"Collecting the different structures that enter the \
8080vertex.\"\>"], "Print",
8081 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8082  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8083  3.579175324391417*^9}],
8084
8085Cell[BoxData[
8086 InterpretationBox[
8087  RowBox[{
8088  "4", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
8089-> starting the computation: \"\>", "\[InvisibleSpace]",
8090   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
8091    ImageSizeCache->{9., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
8092   "\[InvisibleSpace]", "4", "\[InvisibleSpace]", "\<\".\"\>"}],
8093  SequenceForm[
8094  4, " possible non-zero vertices have been found -> starting the \
8095computation: ",
8096   Dynamic[FeynRules`FR$FeynmanRules], " / ", 4, "."],
8097  Editable->False]], "Print",
8098 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8099  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8100  3.579175324394692*^9}],
8101
8102Cell[BoxData[
8103 InterpretationBox[
8104  RowBox[{"4", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
8105  SequenceForm[4, " vertices obtained."],
8106  Editable->False]], "Print",
8107 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8108  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8109  3.5791753246029377`*^9}],
8110
8111Cell[BoxData[
8112 InterpretationBox[
8113  RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
8114   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
8115  SequenceForm[
8116  "Flavor expansion of the vertices distributed over ", 2, " kernels."],
8117  Editable->False]], "Print",
8118 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8119  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8120  3.579175324664475*^9}],
8121
8122Cell[BoxData[
8123 InterpretationBox[
8124  RowBox[{
8125   StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
8126decays: \"\>",
8127    StripOnInput->False,
8128    LineColor->RGBColor[1, 0.5, 0],
8129    FrontFaceColor->RGBColor[1, 0.5, 0],
8130    BackFaceColor->RGBColor[1, 0.5, 0],
8131    GraphicsColor->RGBColor[1, 0.5, 0],
8132    FontWeight->Bold,
8133    FontColor->RGBColor[1, 0.5, 0]], "\[InvisibleSpace]",
8134   DynamicBox[ToBoxes[FeynRules`FR$DecayCounter, StandardForm],
8135    ImageSizeCache->{16., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
8136   "\[InvisibleSpace]", "12"}],
8137  SequenceForm[
8138   Style["Computing the squared matrix elements relevant for the 1->2 decays: \
8139",
8140    RGBColor[1, 0.5, 0], Bold],
8141   Dynamic[FeynRules`FR$DecayCounter], " / ", 12],
8142  Editable->False]], "Print",
8143 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8144  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8145  3.579175325150971*^9}],
8146
8147Cell[BoxData[
8148 InterpretationBox[
8149  RowBox[{
8150   StyleBox["\<\"Computing all the partial 1->2 decay widths: \"\>",
8151    StripOnInput->False,
8152    LineColor->RGBColor[1, 0.5, 0],
8153    FrontFaceColor->RGBColor[1, 0.5, 0],
8154    BackFaceColor->RGBColor[1, 0.5, 0],
8155    GraphicsColor->RGBColor[1, 0.5, 0],
8156    FontWeight->Bold,
8157    FontColor->RGBColor[1, 0.5, 0]], "\[InvisibleSpace]",
8158   DynamicBox[ToBoxes[FeynRules`FR$DecayCntb, StandardForm],
8159    ImageSizeCache->{16., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
8160   "\[InvisibleSpace]", "12"}],
8161  SequenceForm[
8162   Style["Computing all the partial 1->2 decay widths: ",
8163    RGBColor[1, 0.5, 0], Bold],
8164   Dynamic[FeynRules`FR$DecayCntb], " / ", 12],
8165  Editable->False]], "Print",
8166 CellChangeTimes->{3.578915709550982*^9, 3.5789168542932568`*^9,
8167  3.578918313495654*^9, 3.578918380089081*^9, 3.579174423219689*^9,
8168  3.5791753257104273`*^9}]
8169}, Closed]],
8170
8171Cell[BoxData[
8172 RowBox[{
8173  StyleBox[
8174   RowBox[{"Decay", "::", "Overwrite"}], "MessageName"],
8175  RowBox[{
8176  ":", " "}], "\<\"Warning: Previous results will be overwritten.\"\>"}]], \
8177"Message", "MSG",
8178 CellChangeTimes->{3.5791753260507812`*^9}],
8179
8180Cell[BoxData[
8181 FormBox[
8182  RowBox[{"(", "\[NoBreak]", GridBox[{
8183     {
8184      RowBox[{"{",
8185       RowBox[{"S1", ",", "d", ",",
8186        OverscriptBox["d", "\<\"-\"\>"]}], "}"}],
8187      FractionBox[
8188       RowBox[{
8189        SuperscriptBox["e", "2"], " ",
8190        SuperscriptBox["MS1", "4"], " ",
8191        RowBox[{"(",
8192         RowBox[{
8193          RowBox[{"4", " ",
8194           SubsuperscriptBox["s1", "dr", "2"], " ",
8195           SubsuperscriptBox["s", "w", "4"]}], "+",
8196          RowBox[{
8197           SuperscriptBox[
8198            RowBox[{"(",
8199             RowBox[{"3", "-",
8200              RowBox[{"2", " ",
8201               SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8202           SubsuperscriptBox["s1", "dl", "2"]}]}], ")"}]}],
8203       RowBox[{"288", " ",
8204        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8205        SubsuperscriptBox["s", "w", "2"], " ",
8206        SuperscriptBox[
8207         TemplateBox[{"MS1"},
8208          "Abs"], "3"]}]]},
8209     {
8210      RowBox[{"{",
8211       RowBox[{"S1", ",", "s", ",",
8212        OverscriptBox["s", "\<\"-\"\>"]}], "}"}],
8213      FractionBox[
8214       RowBox[{
8215        SuperscriptBox["e", "2"], " ",
8216        SuperscriptBox["MS1", "4"], " ",
8217        RowBox[{"(",
8218         RowBox[{
8219          RowBox[{"4", " ",
8220           SubsuperscriptBox["s1", "dr", "2"], " ",
8221           SubsuperscriptBox["s", "w", "4"]}], "+",
8222          RowBox[{
8223           SuperscriptBox[
8224            RowBox[{"(",
8225             RowBox[{"3", "-",
8226              RowBox[{"2", " ",
8227               SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8228           SubsuperscriptBox["s1", "dl", "2"]}]}], ")"}]}],
8229       RowBox[{"288", " ",
8230        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8231        SubsuperscriptBox["s", "w", "2"], " ",
8232        SuperscriptBox[
8233         TemplateBox[{"MS1"},
8234          "Abs"], "3"]}]]},
8235     {
8236      RowBox[{"{",
8237       RowBox[{"S1", ",", "b", ",",
8238        OverscriptBox["b", "\<\"-\"\>"]}], "}"}],
8239      FractionBox[
8240       RowBox[{
8241        SuperscriptBox["e", "2"], " ",
8242        SqrtBox[
8243         RowBox[{
8244          SuperscriptBox["MS1", "4"], "-",
8245          RowBox[{"4", " ",
8246           SuperscriptBox["MB", "2"], " ",
8247           SuperscriptBox["MS1", "2"]}]}]], " ",
8248        RowBox[{"(",
8249         RowBox[{
8250          RowBox[{
8251           SuperscriptBox["MS1", "2"], " ",
8252           RowBox[{"(",
8253            RowBox[{
8254             RowBox[{"4", " ",
8255              SubsuperscriptBox["s1", "dr", "2"], " ",
8256              SubsuperscriptBox["s", "w", "4"]}], "+",
8257             RowBox[{
8258              SuperscriptBox[
8259               RowBox[{"(",
8260                RowBox[{"3", "-",
8261                 RowBox[{"2", " ",
8262                  SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8263              SubsuperscriptBox["s1", "dl", "2"]}]}], ")"}]}], "-",
8264          RowBox[{
8265           SuperscriptBox["MB", "2"], " ",
8266           RowBox[{"(",
8267            RowBox[{
8268             RowBox[{"4", " ",
8269              SubsuperscriptBox["s1", "dr", "2"], " ",
8270              SubsuperscriptBox["s", "w", "4"]}], "+",
8271             RowBox[{"12", " ",
8272              RowBox[{"(",
8273               RowBox[{"3", "-",
8274                RowBox[{"2", " ",
8275                 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
8276              SubscriptBox["s1", "dl"], " ",
8277              SubscriptBox["s1", "dr"], " ",
8278              SubsuperscriptBox["s", "w", "2"]}], "+",
8279             RowBox[{
8280              SuperscriptBox[
8281               RowBox[{"(",
8282                RowBox[{"3", "-",
8283                 RowBox[{"2", " ",
8284                  SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8285              SubsuperscriptBox["s1", "dl", "2"]}]}], ")"}]}]}], ")"}]}],
8286       RowBox[{"288", " ",
8287        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8288        SubsuperscriptBox["s", "w", "2"], " ",
8289        SuperscriptBox[
8290         TemplateBox[{"MS1"},
8291          "Abs"], "3"]}]]},
8292     {
8293      RowBox[{"{",
8294       RowBox[{"S1", ",", "e", ",",
8295        OverscriptBox["e", "\<\"-\"\>"]}], "}"}],
8296      FractionBox[
8297       RowBox[{
8298        SuperscriptBox["e", "2"], " ",
8299        SuperscriptBox["MS1", "4"], " ",
8300        RowBox[{"(",
8301         RowBox[{
8302          RowBox[{"4", " ",
8303           SubsuperscriptBox["s1", "er", "2"], " ",
8304           SubsuperscriptBox["s", "w", "4"]}], "+",
8305          RowBox[{
8306           SuperscriptBox[
8307            RowBox[{"(",
8308             RowBox[{"1", "-",
8309              RowBox[{"2", " ",
8310               SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8311           SubsuperscriptBox["s1", "el", "2"]}]}], ")"}]}],
8312       RowBox[{"96", " ",
8313        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8314        SubsuperscriptBox["s", "w", "2"], " ",
8315        SuperscriptBox[
8316         TemplateBox[{"MS1"},
8317          "Abs"], "3"]}]]},
8318     {
8319      RowBox[{"{",
8320       RowBox[{"S1", ",", "mu", ",",
8321        OverscriptBox["mu", "\<\"-\"\>"]}], "}"}],
8322      FractionBox[
8323       RowBox[{
8324        SuperscriptBox["e", "2"], " ",
8325        SuperscriptBox["MS1", "4"], " ",
8326        RowBox[{"(",
8327         RowBox[{
8328          RowBox[{"4", " ",
8329           SubsuperscriptBox["s1", "er", "2"], " ",
8330           SubsuperscriptBox["s", "w", "4"]}], "+",
8331          RowBox[{
8332           SuperscriptBox[
8333            RowBox[{"(",
8334             RowBox[{"1", "-",
8335              RowBox[{"2", " ",
8336               SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8337           SubsuperscriptBox["s1", "el", "2"]}]}], ")"}]}],
8338       RowBox[{"96", " ",
8339        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8340        SubsuperscriptBox["s", "w", "2"], " ",
8341        SuperscriptBox[
8342         TemplateBox[{"MS1"},
8343          "Abs"], "3"]}]]},
8344     {
8345      RowBox[{"{",
8346       RowBox[{"S1", ",", "ta", ",",
8347        OverscriptBox["ta", "\<\"-\"\>"]}], "}"}],
8348      FractionBox[
8349       RowBox[{
8350        SuperscriptBox["e", "2"], " ",
8351        SqrtBox[
8352         RowBox[{
8353          SuperscriptBox["MS1", "4"], "-",
8354          RowBox[{"4", " ",
8355           SuperscriptBox["MS1", "2"], " ",
8356           SuperscriptBox["MTA", "2"]}]}]], " ",
8357        RowBox[{"(",
8358         RowBox[{
8359          RowBox[{
8360           SuperscriptBox["MS1", "2"], " ",
8361           RowBox[{"(",
8362            RowBox[{
8363             RowBox[{"4", " ",
8364              SubsuperscriptBox["s1", "er", "2"], " ",
8365              SubsuperscriptBox["s", "w", "4"]}], "+",
8366             RowBox[{
8367              SuperscriptBox[
8368               RowBox[{"(",
8369                RowBox[{"1", "-",
8370                 RowBox[{"2", " ",
8371                  SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8372              SubsuperscriptBox["s1", "el", "2"]}]}], ")"}]}], "-",
8373          RowBox[{
8374           SuperscriptBox["MTA", "2"], " ",
8375           RowBox[{"(",
8376            RowBox[{
8377             RowBox[{"4", " ",
8378              SubsuperscriptBox["s1", "er", "2"], " ",
8379              SubsuperscriptBox["s", "w", "4"]}], "+",
8380             RowBox[{"12", " ",
8381              RowBox[{"(",
8382               RowBox[{"1", "-",
8383                RowBox[{"2", " ",
8384                 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
8385              SubscriptBox["s1", "el"], " ",
8386              SubscriptBox["s1", "er"], " ",
8387              SubsuperscriptBox["s", "w", "2"]}], "+",
8388             RowBox[{
8389              SuperscriptBox[
8390               RowBox[{"(",
8391                RowBox[{"1", "-",
8392                 RowBox[{"2", " ",
8393                  SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8394              SubsuperscriptBox["s1", "el", "2"]}]}], ")"}]}]}], ")"}]}],
8395       RowBox[{"96", " ",
8396        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8397        SubsuperscriptBox["s", "w", "2"], " ",
8398        SuperscriptBox[
8399         TemplateBox[{"MS1"},
8400          "Abs"], "3"]}]]},
8401     {
8402      RowBox[{"{",
8403       RowBox[{"S1", ",", "u", ",",
8404        OverscriptBox["u", "\<\"-\"\>"]}], "}"}],
8405      FractionBox[
8406       RowBox[{
8407        SuperscriptBox["e", "2"], " ",
8408        SuperscriptBox["MS1", "4"], " ",
8409        RowBox[{"(",
8410         RowBox[{
8411          RowBox[{"16", " ",
8412           SubsuperscriptBox["s1", "ur", "2"], " ",
8413           SubsuperscriptBox["s", "w", "4"]}], "+",
8414          RowBox[{
8415           SuperscriptBox[
8416            RowBox[{"(",
8417             RowBox[{"3", "-",
8418              RowBox[{"4", " ",
8419               SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8420           SubsuperscriptBox["s1", "ul", "2"]}]}], ")"}]}],
8421       RowBox[{"288", " ",
8422        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8423        SubsuperscriptBox["s", "w", "2"], " ",
8424        SuperscriptBox[
8425         TemplateBox[{"MS1"},
8426          "Abs"], "3"]}]]},
8427     {
8428      RowBox[{"{",
8429       RowBox[{"S1", ",", "c", ",",
8430        OverscriptBox["c", "\<\"-\"\>"]}], "}"}],
8431      FractionBox[
8432       RowBox[{
8433        SuperscriptBox["e", "2"], " ",
8434        SuperscriptBox["MS1", "4"], " ",
8435        RowBox[{"(",
8436         RowBox[{
8437          RowBox[{"16", " ",
8438           SubsuperscriptBox["s1", "ur", "2"], " ",
8439           SubsuperscriptBox["s", "w", "4"]}], "+",
8440          RowBox[{
8441           SuperscriptBox[
8442            RowBox[{"(",
8443             RowBox[{"3", "-",
8444              RowBox[{"4", " ",
8445               SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8446           SubsuperscriptBox["s1", "ul", "2"]}]}], ")"}]}],
8447       RowBox[{"288", " ",
8448        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8449        SubsuperscriptBox["s", "w", "2"], " ",
8450        SuperscriptBox[
8451         TemplateBox[{"MS1"},
8452          "Abs"], "3"]}]]},
8453     {
8454      RowBox[{"{",
8455       RowBox[{"S1", ",", "t", ",",
8456        OverscriptBox["t", "\<\"-\"\>"]}], "}"}],
8457      FractionBox[
8458       RowBox[{
8459        SuperscriptBox["e", "2"], " ",
8460        SqrtBox[
8461         RowBox[{
8462          SuperscriptBox["MS1", "4"], "-",
8463          RowBox[{"4", " ",
8464           SuperscriptBox["MS1", "2"], " ",
8465           SuperscriptBox["MT", "2"]}]}]], " ",
8466        RowBox[{"(",
8467         RowBox[{
8468          RowBox[{
8469           SuperscriptBox["MS1", "2"], " ",
8470           RowBox[{"(",
8471            RowBox[{
8472             RowBox[{"16", " ",
8473              SubsuperscriptBox["s1", "ur", "2"], " ",
8474              SubsuperscriptBox["s", "w", "4"]}], "+",
8475             RowBox[{
8476              SuperscriptBox[
8477               RowBox[{"(",
8478                RowBox[{"3", "-",
8479                 RowBox[{"4", " ",
8480                  SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8481              SubsuperscriptBox["s1", "ul", "2"]}]}], ")"}]}], "-",
8482          RowBox[{
8483           SuperscriptBox["MT", "2"], " ",
8484           RowBox[{"(",
8485            RowBox[{
8486             RowBox[{"16", " ",
8487              SubsuperscriptBox["s1", "ur", "2"], " ",
8488              SubsuperscriptBox["s", "w", "4"]}], "+",
8489             RowBox[{"24", " ",
8490              RowBox[{"(",
8491               RowBox[{"3", "-",
8492                RowBox[{"4", " ",
8493                 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
8494              SubscriptBox["s1", "ul"], " ",
8495              SubscriptBox["s1", "ur"], " ",
8496              SubsuperscriptBox["s", "w", "2"]}], "+",
8497             RowBox[{
8498              SuperscriptBox[
8499               RowBox[{"(",
8500                RowBox[{"3", "-",
8501                 RowBox[{"4", " ",
8502                  SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8503              SubsuperscriptBox["s1", "ul", "2"]}]}], ")"}]}]}], ")"}]}],
8504       RowBox[{"288", " ",
8505        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8506        SubsuperscriptBox["s", "w", "2"], " ",
8507        SuperscriptBox[
8508         TemplateBox[{"MS1"},
8509          "Abs"], "3"]}]]},
8510     {
8511      RowBox[{"{",
8512       RowBox[{"S1", ",", "ve", ",",
8513        OverscriptBox["ve", "\<\"-\"\>"]}], "}"}],
8514      FractionBox[
8515       RowBox[{
8516        SuperscriptBox["e", "2"], " ",
8517        SuperscriptBox["MS1", "4"], " ",
8518        SubsuperscriptBox["s1", "v", "2"]}],
8519       RowBox[{"96", " ",
8520        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8521        SubsuperscriptBox["s", "w", "2"], " ",
8522        SuperscriptBox[
8523         TemplateBox[{"MS1"},
8524          "Abs"], "3"]}]]},
8525     {
8526      RowBox[{"{",
8527       RowBox[{"S1", ",", "vm", ",",
8528        OverscriptBox["vm", "\<\"-\"\>"]}], "}"}],
8529      FractionBox[
8530       RowBox[{
8531        SuperscriptBox["e", "2"], " ",
8532        SuperscriptBox["MS1", "4"], " ",
8533        SubsuperscriptBox["s1", "v", "2"]}],
8534       RowBox[{"96", " ",
8535        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8536        SubsuperscriptBox["s", "w", "2"], " ",
8537        SuperscriptBox[
8538         TemplateBox[{"MS1"},
8539          "Abs"], "3"]}]]},
8540     {
8541      RowBox[{"{",
8542       RowBox[{"S1", ",", "vt", ",",
8543        OverscriptBox["vt", "\<\"-\"\>"]}], "}"}],
8544      FractionBox[
8545       RowBox[{
8546        SuperscriptBox["e", "2"], " ",
8547        SuperscriptBox["MS1", "4"], " ",
8548        SubsuperscriptBox["s1", "v", "2"]}],
8549       RowBox[{"96", " ",
8550        SubsuperscriptBox["c", "w", "2"], " ", "\[Pi]", " ",
8551        SubsuperscriptBox["s", "w", "2"], " ",
8552        SuperscriptBox[
8553         TemplateBox[{"MS1"},
8554          "Abs"], "3"]}]]}
8555    },
8556    GridBoxAlignment->{
8557     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
8558      "RowsIndexed" -> {}},
8559    GridBoxSpacings->{"Columns" -> {
8560        Offset[0.27999999999999997`], {
8561         Offset[0.7]},
8562        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
8563        Offset[0.2], {
8564         Offset[0.4]},
8565        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
8566  TraditionalForm]], "Output",
8567 CellChangeTimes->{{3.5791753261235743`*^9, 3.579175332258438*^9}}]
8568}, Open  ]],
8569
8570Cell[CellGroupData[{
8571
8572Cell[BoxData[
8573 RowBox[{
8574  RowBox[{"Fold", "[",
8575   RowBox[{
8576    RowBox[{
8577     RowBox[{"#1", "+",
8578      RowBox[{"#2", "[",
8579       RowBox[{"[", "2", "]"}], "]"}]}], "&"}], ",", "0", ",",
8580    RowBox[{"mydecays", "/.",
8581     RowBox[{"{",
8582      RowBox[{
8583       RowBox[{"Abs", "[", "MS1", "]"}], "\[Rule]", "MS1"}], "}"}]}]}], "]"}],
8584   "//", "FullSimplify"}]], "Input",
8585 CellChangeTimes->{{3.579175038781498*^9, 3.579175089628989*^9}, {
8586  3.5791751463646507`*^9, 3.579175147917482*^9}, {3.579175202685326*^9,
8587  3.579175250716889*^9}, {3.5791753438690042`*^9, 3.579175345756125*^9}}],
8588
8589Cell[BoxData[
8590 FormBox[
8591  RowBox[{
8592   FractionBox["1",
8593    RowBox[{"288", " ", "\[Pi]", " ",
8594     SuperscriptBox["MS1", "3"], " ",
8595     SubsuperscriptBox["c", "w", "2"], " ",
8596     SubsuperscriptBox["s", "w", "2"]}]],
8597   RowBox[{
8598    SuperscriptBox["e", "2"], " ",
8599    RowBox[{"(",
8600     RowBox[{
8601      RowBox[{
8602       SqrtBox[
8603        RowBox[{
8604         SuperscriptBox["MS1", "4"], "-",
8605         RowBox[{"4", " ",
8606          SuperscriptBox["MB", "2"], " ",
8607          SuperscriptBox["MS1", "2"]}]}]], " ",
8608       RowBox[{"(",
8609        RowBox[{
8610         RowBox[{
8611          SuperscriptBox["MB", "2"], " ",
8612          RowBox[{"(",
8613           RowBox[{
8614            RowBox[{"-",
8615             RowBox[{"4", " ",
8616              SubsuperscriptBox["s", "w", "4"], " ",
8617              RowBox[{"(",
8618               RowBox[{
8619                RowBox[{"-",
8620                 RowBox[{"6", " ",
8621                  SubscriptBox["s1", "dl"], " ",
8622                  SubscriptBox["s1", "dr"]}]}], "+",
8623                SubsuperscriptBox["s1", "dl", "2"], "+",
8624                SubsuperscriptBox["s1", "dr", "2"]}], ")"}]}]}], "+",
8625            RowBox[{"12", " ",
8626             SubscriptBox["s1", "dl"], " ",
8627             SubsuperscriptBox["s", "w", "2"], " ",
8628             RowBox[{"(",
8629              RowBox[{
8630               SubscriptBox["s1", "dl"], "-",
8631               RowBox[{"3", " ",
8632                SubscriptBox["s1", "dr"]}]}], ")"}]}], "-",
8633            RowBox[{"9", " ",
8634             SubsuperscriptBox["s1", "dl", "2"]}]}], ")"}]}], "+",
8635         RowBox[{
8636          SuperscriptBox["MS1", "2"], " ",
8637          RowBox[{"(",
8638           RowBox[{
8639            RowBox[{
8640             SubsuperscriptBox["s1", "dl", "2"], " ",
8641             SuperscriptBox[
8642              RowBox[{"(",
8643               RowBox[{"3", "-",
8644                RowBox[{"2", " ",
8645                 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"]}], "+",
8646            RowBox[{"4", " ",
8647             SubsuperscriptBox["s1", "dr", "2"], " ",
8648             SubsuperscriptBox["s", "w", "4"]}]}], ")"}]}]}], ")"}]}], "+",
8649      RowBox[{"2", " ",
8650       SuperscriptBox["MS1", "4"], " ",
8651       RowBox[{"(",
8652        RowBox[{
8653         RowBox[{
8654          SubsuperscriptBox["s1", "dl", "2"], " ",
8655          SuperscriptBox[
8656           RowBox[{"(",
8657            RowBox[{"3", "-",
8658             RowBox[{"2", " ",
8659              SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"]}], "+",
8660         RowBox[{"4", " ",
8661          SubsuperscriptBox["s1", "dr", "2"], " ",
8662          SubsuperscriptBox["s", "w", "4"]}]}], ")"}]}], "+",
8663      RowBox[{"6", " ",
8664       SuperscriptBox["MS1", "4"], " ",
8665       RowBox[{"(",
8666        RowBox[{
8667         RowBox[{
8668          SubsuperscriptBox["s1", "el", "2"], " ",
8669          SuperscriptBox[
8670           RowBox[{"(",
8671            RowBox[{"1", "-",
8672             RowBox[{"2", " ",
8673              SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"]}], "+",
8674         RowBox[{"4", " ",
8675          SubsuperscriptBox["s1", "er", "2"], " ",
8676          SubsuperscriptBox["s", "w", "4"]}]}], ")"}]}], "+",
8677      RowBox[{"3", " ",
8678       SqrtBox[
8679        RowBox[{
8680         SuperscriptBox["MS1", "4"], "-",
8681         RowBox[{"4", " ",
8682          SuperscriptBox["MS1", "2"], " ",
8683          SuperscriptBox["MTA", "2"]}]}]], " ",
8684       RowBox[{"(",
8685        RowBox[{
8686         RowBox[{
8687          SuperscriptBox["MS1", "2"], " ",
8688          RowBox[{"(",
8689           RowBox[{
8690            RowBox[{
8691             SubsuperscriptBox["s1", "el", "2"], " ",
8692             SuperscriptBox[
8693              RowBox[{"(",
8694               RowBox[{"1", "-",
8695                RowBox[{"2", " ",
8696                 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"]}], "+",
8697            RowBox[{"4", " ",
8698             SubsuperscriptBox["s1", "er", "2"], " ",
8699             SubsuperscriptBox["s", "w", "4"]}]}], ")"}]}], "-",
8700         RowBox[{
8701          SuperscriptBox["MTA", "2"], " ",
8702          RowBox[{"(",
8703           RowBox[{
8704            RowBox[{"4", " ",
8705             SubsuperscriptBox["s", "w", "4"], " ",
8706             RowBox[{"(",
8707              RowBox[{
8708               RowBox[{"-",
8709                RowBox[{"6", " ",
8710                 SubscriptBox["s1", "el"], " ",
8711                 SubscriptBox["s1", "er"]}]}], "+",
8712               SubsuperscriptBox["s1", "el", "2"], "+",
8713               SubsuperscriptBox["s1", "er", "2"]}], ")"}]}], "-",
8714            RowBox[{"4", " ",
8715             SubscriptBox["s1", "el"], " ",
8716             SubsuperscriptBox["s", "w", "2"], " ",
8717             RowBox[{"(",
8718              RowBox[{
8719               SubscriptBox["s1", "el"], "-",
8720               RowBox[{"3", " ",
8721                SubscriptBox["s1", "er"]}]}], ")"}]}], "+",
8722            SubsuperscriptBox["s1", "el", "2"]}], ")"}]}]}], ")"}]}], "+",
8723      RowBox[{"2", " ",
8724       SuperscriptBox["MS1", "4"], " ",
8725       RowBox[{"(",
8726        RowBox[{
8727         RowBox[{
8728          SuperscriptBox[
8729           RowBox[{"(",
8730            RowBox[{"3", "-",
8731             RowBox[{"4", " ",
8732              SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8733          SubsuperscriptBox["s1", "ul", "2"]}], "+",
8734         RowBox[{"16", " ",
8735          SubsuperscriptBox["s", "w", "4"], " ",
8736          SubsuperscriptBox["s1", "ur", "2"]}]}], ")"}]}], "+",
8737      RowBox[{"9", " ",
8738       SuperscriptBox["MS1", "4"], " ",
8739       SubsuperscriptBox["s1", "v", "2"]}], "+",
8740      RowBox[{
8741       SqrtBox[
8742        RowBox[{
8743         SuperscriptBox["MS1", "4"], "-",
8744         RowBox[{"4", " ",
8745          SuperscriptBox["MS1", "2"], " ",
8746          SuperscriptBox["MT", "2"]}]}]], " ",
8747       RowBox[{"(",
8748        RowBox[{
8749         RowBox[{
8750          SuperscriptBox["MS1", "2"], " ",
8751          RowBox[{"(",
8752           RowBox[{
8753            RowBox[{
8754             SuperscriptBox[
8755              RowBox[{"(",
8756               RowBox[{"3", "-",
8757                RowBox[{"4", " ",
8758                 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], "2"], " ",
8759             SubsuperscriptBox["s1", "ul", "2"]}], "+",
8760            RowBox[{"16", " ",
8761             SubsuperscriptBox["s", "w", "4"], " ",
8762             SubsuperscriptBox["s1", "ur", "2"]}]}], ")"}]}], "+",
8763         RowBox[{
8764          SuperscriptBox["MT", "2"], " ",
8765          RowBox[{"(",
8766           RowBox[{
8767            RowBox[{"-",
8768             RowBox[{"16", " ",
8769              SubsuperscriptBox["s", "w", "4"], " ",
8770              RowBox[{"(",
8771               RowBox[{
8772                RowBox[{"-",
8773                 RowBox[{"6", " ",
8774                  SubscriptBox["s1", "ul"], " ",
8775                  SubscriptBox["s1", "ur"]}]}], "+",
8776                SubsuperscriptBox["s1", "ul", "2"], "+",
8777                SubsuperscriptBox["s1", "ur", "2"]}], ")"}]}]}], "+",
8778            RowBox[{"24", " ",
8779             SubsuperscriptBox["s", "w", "2"], " ",
8780             SubscriptBox["s1", "ul"], " ",
8781             RowBox[{"(",
8782              RowBox[{
8783               SubscriptBox["s1", "ul"], "-",
8784               RowBox[{"3", " ",
8785                SubscriptBox["s1", "ur"]}]}], ")"}]}], "-",
8786            RowBox[{"9", " ",
8787             SubsuperscriptBox["s1", "ul", "2"]}]}], ")"}]}]}], ")"}]}]}],
8788     ")"}]}]}], TraditionalForm]], "Output",
8789 CellChangeTimes->{{3.579175355273655*^9, 3.579175359715658*^9}}]
8790}, Open  ]],
8791
8792Cell["For O1", "Text",
8793 CellChangeTimes->{{3.5791754426219273`*^9, 3.57917547898413*^9}}],
8794
8795Cell[CellGroupData[{
8796
8797Cell[BoxData[
8798 RowBox[{"NumericalValue", "[", "WO1", "]"}]], "Input",
8799 CellChangeTimes->{{3.578918397273728*^9, 3.578918427479536*^9}, {
8800   3.579174302873942*^9, 3.579174304666011*^9}, 3.580046277292117*^9,
8801   3.5810765302087517`*^9, {3.582980263031994*^9, 3.582980311975606*^9}}],
8802
8803Cell[BoxData["236.7869169356945`"], "Output",
8804 CellChangeTimes->{
8805  3.578918427941093*^9, 3.579175364557753*^9, 3.579608703752829*^9,
8806   3.5796096181780643`*^9, 3.579851592076695*^9, {3.57985162591085*^9,
8807   3.579851658235222*^9}, 3.581153278860764*^9, 3.5811551536427803`*^9,
8808   3.581165444913165*^9, 3.582980234320545*^9, {3.582980275947204*^9,
8809   3.582980312580525*^9}, 3.5830449077135572`*^9, 3.583045644785771*^9,
8810   3.583231504962401*^9}]
8811}, Open  ]],
8812
8813Cell[CellGroupData[{
8814
8815Cell[BoxData[{
8816 RowBox[{
8817  RowBox[{"myverts", " ", "=",
8818   RowBox[{"FeynmanRules", "[",
8819    RowBox[{"LO1", ",", " ",
8820     RowBox[{"ScreenOutput", "\[Rule]", "False"}]}], "]"}]}],
8821  ";"}], "\[IndentingNewLine]",
8822 RowBox[{
8823  RowBox[{"myexpanded", " ", "=", " ",
8824   RowBox[{"FlavorExpansion", "[", "myverts", "]"}]}],
8825  ";"}], "\[IndentingNewLine]",
8826 RowBox[{
8827  RowBox[{"CalculateM2Decays", "[", "myexpanded", "]"}],
8828  ";"}], "\[IndentingNewLine]",
8829 RowBox[{"mydecays", " ", "=", " ",
8830  RowBox[{"ComputeDecays", "[",
8831   RowBox[{"%", ",", " ",
8832    RowBox[{"Simplify", "\[Rule]", "True"}]}], "]"}]}]}], "Input",
8833 CellChangeTimes->{{3.576998965860227*^9, 3.576999017553656*^9}, {
8834  3.5769990526799383`*^9, 3.576999054972035*^9}, {3.576999475688168*^9,
8835  3.576999476051052*^9}, {3.577001655222089*^9, 3.577001667599221*^9}, {
8836  3.57701137739784*^9, 3.577011377653968*^9}, {3.578137294614687*^9,
8837  3.578137299077929*^9}, {3.578384384391281*^9, 3.578384384759079*^9}, {
8838  3.578915703514648*^9, 3.578915708666231*^9}, {3.579174309084853*^9,
8839  3.579174309404623*^9}}],
8840
8841Cell[CellGroupData[{
8842
8843Cell[BoxData[
8844 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
8845  StripOnInput->False,
8846  LineColor->RGBColor[1, 0.5, 0],
8847  FrontFaceColor->RGBColor[1, 0.5, 0],
8848  BackFaceColor->RGBColor[1, 0.5, 0],
8849  GraphicsColor->RGBColor[1, 0.5, 0],
8850  FontWeight->Bold,
8851  FontColor->RGBColor[1, 0.5, 0]]], "Print",
8852 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8853  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8854  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.583042550029442*^9}],
8855
8856Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
8857 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8858  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8859  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.583042550062992*^9}],
8860
8861Cell[BoxData["\<\"Collecting the different structures that enter the \
8862vertex.\"\>"], "Print",
8863 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8864  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8865  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.583042550131133*^9}],
8866
8867Cell[BoxData[
8868 InterpretationBox[
8869  RowBox[{
8870  "2", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
8871-> starting the computation: \"\>", "\[InvisibleSpace]",
8872   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
8873    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
8874   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\".\"\>"}],
8875  SequenceForm[
8876  2, " possible non-zero vertices have been found -> starting the \
8877computation: ",
8878   Dynamic[FeynRules`FR$FeynmanRules], " / ", 2, "."],
8879  Editable->False]], "Print",
8880 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8881  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8882  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.58304255013323*^9}],
8883
8884Cell[BoxData[
8885 InterpretationBox[
8886  RowBox[{"2", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
8887  SequenceForm[2, " vertices obtained."],
8888  Editable->False]], "Print",
8889 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8890  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8891  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.583042550228244*^9}],
8892
8893Cell[BoxData[
8894 InterpretationBox[
8895  RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
8896   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
8897  SequenceForm[
8898  "Flavor expansion of the vertices distributed over ", 2, " kernels."],
8899  Editable->False]], "Print",
8900 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8901  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8902  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.583042550304262*^9}],
8903
8904Cell[BoxData[
8905 StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
8906decays: \"\>",
8907  StripOnInput->False,
8908  LineColor->RGBColor[1, 0.5, 0],
8909  FrontFaceColor->RGBColor[1, 0.5, 0],
8910  BackFaceColor->RGBColor[1, 0.5, 0],
8911  GraphicsColor->RGBColor[1, 0.5, 0],
8912  FontWeight->Bold,
8913  FontColor->RGBColor[1, 0.5, 0]]], "Print",
8914 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8915  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8916  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.583042550599585*^9}],
8917
8918Cell[BoxData[
8919 InterpretationBox[
8920  RowBox[{
8921   DynamicBox[ToBoxes[FeynRules`FR$DecayCounter, StandardForm],
8922    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
8923   "\[InvisibleSpace]", "6"}],
8924  SequenceForm[
8925   Dynamic[FeynRules`FR$DecayCounter], " / ", 6],
8926  Editable->False]], "Print",
8927 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8928  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8929  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.5830425506015043`*^9}],
8930
8931Cell[BoxData[
8932 InterpretationBox[
8933  RowBox[{
8934   StyleBox["\<\"Computing all the partial 1->2 decay widths: \"\>",
8935    StripOnInput->False,
8936    LineColor->RGBColor[1, 0.5, 0],
8937    FrontFaceColor->RGBColor[1, 0.5, 0],
8938    BackFaceColor->RGBColor[1, 0.5, 0],
8939    GraphicsColor->RGBColor[1, 0.5, 0],
8940    FontWeight->Bold,
8941    FontColor->RGBColor[1, 0.5, 0]], "\[InvisibleSpace]",
8942   DynamicBox[ToBoxes[FeynRules`FR$DecayCntb, StandardForm],
8943    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
8944   "\[InvisibleSpace]", "6"}],
8945  SequenceForm[
8946   Style["Computing all the partial 1->2 decay widths: ",
8947    RGBColor[1, 0.5, 0], Bold],
8948   Dynamic[FeynRules`FR$DecayCntb], " / ", 6],
8949  Editable->False]], "Print",
8950 CellChangeTimes->{3.5791743490578117`*^9, 3.579174633827922*^9,
8951  3.5791753690856743`*^9, 3.5796087057595463`*^9, 3.581153298567444*^9,
8952  3.5811551549841833`*^9, 3.5811654510228662`*^9, 3.583042550776269*^9}]
8953}, Closed]],
8954
8955Cell[BoxData[
8956 FormBox[
8957  RowBox[{"(", "\[NoBreak]", GridBox[{
8958     {
8959      RowBox[{"{",
8960       RowBox[{"O1", ",", "d", ",",
8961        OverscriptBox["d", "\<\"-\"\>"]}], "}"}],
8962      FractionBox[
8963       RowBox[{
8964        SuperscriptBox["G", "2"], " ",
8965        SuperscriptBox["MO1", "4"], " ",
8966        RowBox[{"(",
8967         RowBox[{
8968          SubsuperscriptBox["o1", "dl", "2"], "+",
8969          SubsuperscriptBox["o1", "dr", "2"]}], ")"}]}],
8970       RowBox[{"48", " ", "\[Pi]", " ",
8971        SuperscriptBox[
8972         TemplateBox[{"MO1"},
8973          "Abs"], "3"]}]]},
8974     {
8975      RowBox[{"{",
8976       RowBox[{"O1", ",", "s", ",",
8977        OverscriptBox["s", "\<\"-\"\>"]}], "}"}],
8978      FractionBox[
8979       RowBox[{
8980        SuperscriptBox["G", "2"], " ",
8981        SuperscriptBox["MO1", "4"], " ",
8982        RowBox[{"(",
8983         RowBox[{
8984          SubsuperscriptBox["o1", "dl", "2"], "+",
8985          SubsuperscriptBox["o1", "dr", "2"]}], ")"}]}],
8986       RowBox[{"48", " ", "\[Pi]", " ",
8987        SuperscriptBox[
8988         TemplateBox[{"MO1"},
8989          "Abs"], "3"]}]]},
8990     {
8991      RowBox[{"{",
8992       RowBox[{"O1", ",", "b", ",",
8993        OverscriptBox["b", "\<\"-\"\>"]}], "}"}],
8994      FractionBox[
8995       RowBox[{
8996        SuperscriptBox["G", "2"], " ",
8997        SqrtBox[
8998         RowBox[{
8999          SuperscriptBox["MO1", "4"], "-",
9000          RowBox[{"4", " ",
9001           SuperscriptBox["MB", "2"], " ",
9002           SuperscriptBox["MO1", "2"]}]}]], " ",
9003        RowBox[{"(",
9004         RowBox[{
9005          RowBox[{
9006           SuperscriptBox["MO1", "2"], " ",
9007           RowBox[{"(",
9008            RowBox[{
9009             SubsuperscriptBox["o1", "dl", "2"], "+",
9010             SubsuperscriptBox["o1", "dr", "2"]}], ")"}]}], "-",
9011          RowBox[{
9012           SuperscriptBox["MB", "2"], " ",
9013           RowBox[{"(",
9014            RowBox[{
9015             SubsuperscriptBox["o1", "dl", "2"], "-",
9016             RowBox[{"6", " ",
9017              SubscriptBox["o1", "dr"], " ",
9018              SubscriptBox["o1", "dl"]}], "+",
9019             SubsuperscriptBox["o1", "dr", "2"]}], ")"}]}]}], ")"}]}],
9020       RowBox[{"48", " ", "\[Pi]", " ",
9021        SuperscriptBox[
9022         TemplateBox[{"MO1"},
9023          "Abs"], "3"]}]]},
9024     {
9025      RowBox[{"{",
9026       RowBox[{"O1", ",", "u", ",",
9027        OverscriptBox["u", "\<\"-\"\>"]}], "}"}],
9028      FractionBox[
9029       RowBox[{
9030        SuperscriptBox["G", "2"], " ",
9031        SuperscriptBox["MO1", "4"], " ",
9032        RowBox[{"(",
9033         RowBox[{
9034          SubsuperscriptBox["o1", "ul", "2"], "+",
9035          SubsuperscriptBox["o1", "ur", "2"]}], ")"}]}],
9036       RowBox[{"48", " ", "\[Pi]", " ",
9037        SuperscriptBox[
9038         TemplateBox[{"MO1"},
9039          "Abs"], "3"]}]]},
9040     {
9041      RowBox[{"{",
9042       RowBox[{"O1", ",", "c", ",",
9043        OverscriptBox["c", "\<\"-\"\>"]}], "}"}],
9044      FractionBox[
9045       RowBox[{
9046        SuperscriptBox["G", "2"], " ",
9047        SuperscriptBox["MO1", "4"], " ",
9048        RowBox[{"(",
9049         RowBox[{
9050          SubsuperscriptBox["o1", "ul", "2"], "+",
9051          SubsuperscriptBox["o1", "ur", "2"]}], ")"}]}],
9052       RowBox[{"48", " ", "\[Pi]", " ",
9053        SuperscriptBox[
9054         TemplateBox[{"MO1"},
9055          "Abs"], "3"]}]]},
9056     {
9057      RowBox[{"{",
9058       RowBox[{"O1", ",", "t", ",",
9059        OverscriptBox["t", "\<\"-\"\>"]}], "}"}],
9060      FractionBox[
9061       RowBox[{
9062        SuperscriptBox["G", "2"], " ",
9063        SqrtBox[
9064         RowBox[{
9065          SuperscriptBox["MO1", "4"], "-",
9066          RowBox[{"4", " ",
9067           SuperscriptBox["MO1", "2"], " ",
9068           SuperscriptBox["MT", "2"]}]}]], " ",
9069        RowBox[{"(",
9070         RowBox[{
9071          RowBox[{
9072           SuperscriptBox["MO1", "2"], " ",
9073           RowBox[{"(",
9074            RowBox[{
9075             SubsuperscriptBox["o1", "ul", "2"], "+",
9076             SubsuperscriptBox["o1", "ur", "2"]}], ")"}]}], "-",
9077          RowBox[{
9078           SuperscriptBox["MT", "2"], " ",
9079           RowBox[{"(",
9080            RowBox[{
9081             SubsuperscriptBox["o1", "ul", "2"], "-",
9082             RowBox[{"6", " ",
9083              SubscriptBox["o1", "ur"], " ",
9084              SubscriptBox["o1", "ul"]}], "+",
9085             SubsuperscriptBox["o1", "ur", "2"]}], ")"}]}]}], ")"}]}],
9086       RowBox[{"48", " ", "\[Pi]", " ",
9087        SuperscriptBox[
9088         TemplateBox[{"MO1"},
9089          "Abs"], "3"]}]]}
9090    },
9091    GridBoxAlignment->{
9092     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
9093      "RowsIndexed" -> {}},
9094    GridBoxSpacings->{"Columns" -> {
9095        Offset[0.27999999999999997`], {
9096         Offset[0.7]},
9097        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
9098        Offset[0.2], {
9099         Offset[0.4]},
9100        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
9101  TraditionalForm]], "Output",
9102 CellChangeTimes->{{3.579174349885922*^9, 3.5791743561662416`*^9},
9103   3.5791746346666727`*^9, {3.579175369961651*^9, 3.579175376321494*^9}, {
9104   3.57960870663052*^9, 3.579608715998344*^9}, 3.5811532999810467`*^9,
9105   3.581153458262947*^9, {3.581155155748599*^9, 3.5811551621843643`*^9},
9106   3.58116545195166*^9, 3.581166662346054*^9, {3.583042550884763*^9,
9107   3.583042556682448*^9}}]
9108}, Open  ]],
9109
9110Cell[CellGroupData[{
9111
9112Cell[BoxData[
9113 RowBox[{
9114  RowBox[{"Fold", "[",
9115   RowBox[{
9116    RowBox[{
9117     RowBox[{"#1", "+",
9118      RowBox[{"#2", "[",
9119       RowBox[{"[", "2", "]"}], "]"}]}], "&"}], ",", "0", ",",
9120    RowBox[{"mydecays", "/.",
9121     RowBox[{"{",
9122      RowBox[{
9123       RowBox[{"Abs", "[", "MO1", "]"}], "\[Rule]", "MO1"}], "}"}]}]}], "]"}],
9124   "//", "FullSimplify"}]], "Input",
9125 CellChangeTimes->{{3.579175038781498*^9, 3.579175089628989*^9}, {
9126   3.5791751463646507`*^9, 3.579175147917482*^9}, {3.579175202685326*^9,
9127   3.579175250716889*^9}, {3.5791753849401093`*^9, 3.579175389148361*^9}, {
9128   3.581153293731441*^9, 3.581153320081787*^9}, {3.581155147618628*^9,
9129   3.5811551483704977`*^9}, {3.5811582250919447`*^9, 3.581158254931628*^9},
9130   3.581165401682724*^9}],
9131
9132Cell[BoxData[
9133 FormBox[
9134  RowBox[{
9135   FractionBox["1",
9136    RowBox[{"48", " ", "\[Pi]", " ",
9137     SuperscriptBox["MO1", "3"]}]],
9138   RowBox[{
9139    SuperscriptBox["G", "2"], " ",
9140    RowBox[{"(",
9141     RowBox[{
9142      RowBox[{
9143       SqrtBox[
9144        RowBox[{
9145         SuperscriptBox["MO1", "4"], "-",
9146         RowBox[{"4", " ",
9147          SuperscriptBox["MB", "2"], " ",
9148          SuperscriptBox["MO1", "2"]}]}]], " ",
9149       RowBox[{"(",
9150        RowBox[{
9151         RowBox[{
9152          SuperscriptBox["MO1", "2"], " ",
9153          RowBox[{"(",
9154           RowBox[{
9155            SubsuperscriptBox["o1", "dl", "2"], "+",
9156            SubsuperscriptBox["o1", "dr", "2"]}], ")"}]}], "-",
9157         RowBox[{
9158          SuperscriptBox["MB", "2"], " ",
9159          RowBox[{"(",
9160           RowBox[{
9161            RowBox[{"-",
9162             RowBox[{"6", " ",
9163              SubscriptBox["o1", "dl"], " ",
9164              SubscriptBox["o1", "dr"]}]}], "+",
9165            SubsuperscriptBox["o1", "dl", "2"], "+",
9166            SubsuperscriptBox["o1", "dr", "2"]}], ")"}]}]}], ")"}]}], "+",
9167      RowBox[{"2", " ",
9168       SuperscriptBox["MO1", "4"], " ",
9169       RowBox[{"(",
9170        RowBox[{
9171         SubsuperscriptBox["o1", "dl", "2"], "+",
9172         SubsuperscriptBox["o1", "dr", "2"]}], ")"}]}], "+",
9173      RowBox[{"2", " ",
9174       SuperscriptBox["MO1", "4"], " ",
9175       RowBox[{"(",
9176        RowBox[{
9177         SubsuperscriptBox["o1", "ul", "2"], "+",
9178         SubsuperscriptBox["o1", "ur", "2"]}], ")"}]}], "+",
9179      RowBox[{
9180       SqrtBox[
9181        RowBox[{
9182         SuperscriptBox["MO1", "4"], "-",
9183         RowBox[{"4", " ",
9184          SuperscriptBox["MO1", "2"], " ",
9185          SuperscriptBox["MT", "2"]}]}]], " ",
9186       RowBox[{"(",
9187        RowBox[{
9188         RowBox[{
9189          SuperscriptBox["MO1", "2"], " ",
9190          RowBox[{"(",
9191           RowBox[{
9192            SubsuperscriptBox["o1", "ul", "2"], "+",
9193            SubsuperscriptBox["o1", "ur", "2"]}], ")"}]}], "-",
9194         RowBox[{
9195          SuperscriptBox["MT", "2"], " ",
9196          RowBox[{"(",
9197           RowBox[{
9198            RowBox[{"-",
9199             RowBox[{"6", " ",
9200              SubscriptBox["o1", "ul"], " ",
9201              SubscriptBox["o1", "ur"]}]}], "+",
9202            SubsuperscriptBox["o1", "ul", "2"], "+",
9203            SubsuperscriptBox["o1", "ur", "2"]}], ")"}]}]}], ")"}]}]}],
9204     ")"}]}]}], TraditionalForm]], "Output",
9205 CellChangeTimes->{{3.579175384998328*^9, 3.579175398241267*^9}, {
9206   3.579608723244809*^9, 3.579608728323354*^9}, {3.581153294724028*^9,
9207   3.581153320750814*^9}, 3.581155175869771*^9, 3.5811582605315313`*^9,
9208   3.5811654623370333`*^9, 3.581244821459379*^9}]
9209}, Open  ]]
9210}, Closed]],
9211
9212Cell[CellGroupData[{
9213
9214Cell["Addendum: Hermiticity", "Subtitle",
9215 CellChangeTimes->{{3.577174928993369*^9, 3.577174972737718*^9}}],
9216
9217Cell[CellGroupData[{
9218
9219Cell[BoxData[
9220 RowBox[{"CheckHermiticity", "[", "LS0", "]"}]], "Input",
9221 CellChangeTimes->{{3.577174974825507*^9, 3.57717498218012*^9}}],
9222
9223Cell[CellGroupData[{
9224
9225Cell[BoxData["\<\"Checking for hermiticity by calculating the Feynman rules \
9226contained in L-HC[L].\"\>"], "Print",
9227 CellChangeTimes->{
9228  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9229   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9230   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9231   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9232   3.5795063737579727`*^9, 3.57959854697353*^9}],
9233
9234Cell[BoxData["\<\"If the lagrangian is hermitian, then the number of vertices \
9235should be zero.\"\>"], "Print",
9236 CellChangeTimes->{
9237  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9238   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9239   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9240   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9241   3.5795063737579727`*^9, 3.579598546985797*^9}],
9242
9243Cell[BoxData[
9244 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
9245  StripOnInput->False,
9246  LineColor->RGBColor[1, 0.5, 0],
9247  FrontFaceColor->RGBColor[1, 0.5, 0],
9248  BackFaceColor->RGBColor[1, 0.5, 0],
9249  GraphicsColor->RGBColor[1, 0.5, 0],
9250  FontWeight->Bold,
9251  FontColor->RGBColor[1, 0.5, 0]]], "Print",
9252 CellChangeTimes->{
9253  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9254   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9255   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9256   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9257   3.5795063737579727`*^9, 3.579598547039989*^9}],
9258
9259Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
9260 CellChangeTimes->{
9261  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9262   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9263   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9264   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9265   3.5795063737579727`*^9, 3.579598547041123*^9}],
9266
9267Cell[BoxData["\<\"Collecting the different structures that enter the \
9268vertex.\"\>"], "Print",
9269 CellChangeTimes->{
9270  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9271   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9272   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9273   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9274   3.5795063737579727`*^9, 3.579598548369853*^9}],
9275
9276Cell[BoxData[
9277 InterpretationBox[
9278  RowBox[{
9279  "2", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
9280-> starting the computation: \"\>", "\[InvisibleSpace]",
9281   DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
9282    ImageSizeCache->{8., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
9283   "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\".\"\>"}],
9284  SequenceForm[
9285  2, " possible non-zero vertices have been found -> starting the \
9286computation: ",
9287   Dynamic[FeynRules`FR$FeynmanRules], " / ", 2, "."],
9288  Editable->False]], "Print",
9289 CellChangeTimes->{
9290  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9291   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9292   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9293   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9294   3.5795063737579727`*^9, 3.579598548426773*^9}]
9295}, Open  ]],
9296
9297Cell[BoxData[
9298 RowBox[{
9299  StyleBox[
9300   RowBox[{"Part", "::", "partw"}], "MessageName"],
9301  RowBox[{
9302  ":", " "}], "\<\"Part \[NoBreak]\\!\\(1\\)\[NoBreak] of \
9303\[NoBreak]\\!\\({}\\)\[NoBreak] does not exist. \\!\\(\\*ButtonBox[\\\"\
9304\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
9305ButtonData:>\\\"paclet:ref/message/General/partw\\\", ButtonNote -> \
9306\\\"Part::partw\\\"]\\)\"\>"}]], "Message", "MSG",
9307 CellChangeTimes->{
9308  3.57717498597263*^9, 3.577184107197295*^9, 3.578139212143527*^9,
9309   3.5782094085679827`*^9, 3.578311393942863*^9, 3.578381284376546*^9,
9310   3.5783813981394663`*^9, {3.578381449412759*^9, 3.578381454005768*^9},
9311   3.578383734048914*^9, 3.5786588375425053`*^9, 3.578659074782647*^9,
9312   3.579506376478444*^9, 3.579598549710577*^9}],
9313
9314Cell[CellGroupData[{
9315
9316Cell[BoxData[
9317 InterpretationBox[
9318  RowBox[{"0", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
9319  SequenceForm[0, " vertices obtained."],
9320  Editable->False]], "Print",
9321 CellChangeTimes->{
9322  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9323   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9324   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9325   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9326   3.5795063737579727`*^9, 3.5795985497118177`*^9}],
9327
9328Cell[BoxData["\<\"The lagrangian is hermitian.\"\>"], "Print",
9329 CellChangeTimes->{
9330  3.577174983029687*^9, 3.577184104255619*^9, 3.578139211068714*^9,
9331   3.578209405840987*^9, 3.578311391244331*^9, 3.578381281687068*^9,
9332   3.578381398051785*^9, {3.578381446679924*^9, 3.5783814513334093`*^9},
9333   3.5783837313398333`*^9, 3.578658834894248*^9, 3.578659072189032*^9,
9334   3.5795063737579727`*^9, 3.579598549712646*^9}]
9335}, Open  ]],
9336
9337Cell[BoxData[
9338 RowBox[{"{", "}"}]], "Output",
9339 CellChangeTimes->{
9340  3.57717498597723*^9, 3.577184107200597*^9, 3.578139212146928*^9,
9341   3.578209408571187*^9, 3.578311393946035*^9, 3.578381284380287*^9,
9342   3.578381398151782*^9, {3.57838144941665*^9, 3.578381454009343*^9},
9343   3.578383734052699*^9, 3.578658837545823*^9, 3.5786590747857447`*^9,
9344   3.579506376481881*^9, 3.579598549713833*^9}]
9345}, Closed]],
9346
9347Cell[CellGroupData[{
9348
9349Cell[BoxData[
9350 RowBox[{
9351  RowBox[{"CheckHermiticity", "[", "LO0", "]"}], " "}]], "Input",
9352 CellChangeTimes->{
9353  3.578377106533237*^9, {3.578380938068934*^9, 3.578380938724339*^9}, {
9354   3.578380996166234*^9, 3.578381077783472*^9}, {3.57838132037466*^9,
9355   3.578381326102907*^9}, {3.578381374836347*^9, 3.5783813784074583`*^9}, {
9356   3.578381457256886*^9, 3.5783814758157*^9}, {3.578381518724292*^9,
9357   3.578381519619605*^9}, 3.5783835708205338`*^9, {3.5783836017963247`*^9,
9358   3.578383611405855*^9}, {3.578383747220833*^9, 3.5783837642196283`*^9}, {
9359   3.578384289909011*^9, 3.578384318308461*^9}, {3.5787379931895943`*^9,
9360   3.578738000275979*^9}}],
9361
9362Cell[CellGroupData[{
9363
9364Cell[BoxData["\<\"Checking for hermiticity by calculating the Feynman rules \
9365contained in L-HC[L].\"\>"], "Print",
9366 CellChangeTimes->{
9367  3.5783813279450407`*^9, 3.57838137920287*^9, {3.578381471415703*^9,
9368   3.578381543268519*^9}, 3.578381852180402*^9, {3.57838263793609*^9,
9369   3.5783826480717907`*^9}, 3.578382691111844*^9, 3.578382730920114*^9,
9370   3.578382842019665*^9, {3.578382906022101*^9, 3.578382913163315*^9},
9371   3.57838361211377*^9, {3.5783837414049873`*^9, 3.5783837648031893`*^9},
9372   3.579598555634428*^9}],
9373
9374Cell[BoxData["\<\"If the lagrangian is hermitian, then the number of vertices \
9375should be zero.\"\>"], "Print",
9376 CellChangeTimes->{
9377  3.5783813279450407`*^9, 3.57838137920287*^9, {3.578381471415703*^9,
9378   3.578381543268519*^9}, 3.578381852180402*^9, {3.57838263793609*^9,
9379   3.5783826480717907`*^9}, 3.578382691111844*^9, 3.578382730920114*^9,
9380   3.578382842019665*^9, {3.578382906022101*^9, 3.578382913163315*^9},
9381   3.57838361211377*^9, {3.5783837414049873`*^9, 3.5783837648031893`*^9},
9382   3.579598555644848*^9}],
9383
9384Cell[BoxData[
9385 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
9386  StripOnInput->False,
9387  LineColor->RGBColor[1, 0.5, 0],
9388  FrontFaceColor->RGBColor[1, 0.5, 0],
9389  BackFaceColor->RGBColor[1, 0.5, 0],
9390  GraphicsColor->RGBColor[1, 0.5, 0],
9391  FontWeight->Bold,
9392  FontColor->RGBColor[1, 0.5, 0]]], "Print",
9393 CellChangeTimes->{
9394  3.5783813279450407`*^9, 3.57838137920287*^9, {3.578381471415703*^9,
9395   3.578381543268519*^9}, 3.578381852180402*^9, {3.57838263793609*^9,
9396   3.5783826480717907`*^9}, 3.578382691111844*^9, 3.578382730920114*^9,
9397   3.578382842019665*^9, {3.578382906022101*^9, 3.578382913163315*^9},
9398   3.57838361211377*^9, {3.5783837414049873`*^9, 3.5783837648031893`*^9},
9399   3.5795985557341623`*^9}],
9400
9401Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
9402 CellChangeTimes->{
9403  3.5783813279450407`*^9, 3.57838137920287*^9, {3.578381471415703*^9,
9404   3.578381543268519*^9}, 3.578381852180402*^9, {3.57838263793609*^9,
9405   3.5783826480717907`*^9}, 3.578382691111844*^9, 3.578382730920114*^9,
9406   3.578382842019665*^9, {3.578382906022101*^9, 3.578382913163315*^9},
9407   3