wiki:anomalyfreeZprime

Version 7 (modified by martinbauer, 5 weeks ago) (diff)

--

Anomaly Free Z prime Model

Autors

  • Martin Bauer
    • Durham University
    • martin.m.bauer@...
  • Sascha Diefenbacher
    • Universität Hamburg
    • sascha.daniel.diefenbacher@...
  • Tilman Plehn
    • Universität Heidelberg
    • plehn@...
  • Michael Russell
  • Daniel A. Camargo

Model Description

We consider consistent dark matter models with a spin-1 mediator Z' and a dark matter fermion χ, charged under the new gauge group. The available options are purely singlet SM fermions, gauged lepton number differences, or the well-known anomaly-free difference between the lepton and baryon numbers

The $Z'$ couplings to currents of SM fermionsare given by:

\begin{alignat}{9}
\mathcal{L}_\text{fermion} = -g_{Z'} j'_\mu & {Z'}^\mu \notag \\
j'_\mu&= 0 \qquad && U(1)_X \notag  \\
j'_\mu&= \bar L_i \gamma_\mu L_i 
          + \bar \ell_i\gamma_\mu \ell_i 
          - \bar L_j \gamma_\mu L_j -\bar\ell_j\gamma_\mu \ell_j
            \qquad && U(1)_{L_i-L_j} \notag \\ 
j'_\mu&=  \frac{1}{3}\bar Q \gamma_\mu Q 
          + \frac{1}{3}\bar u_R\gamma_\mu u_R 
          + \frac{1}{3}\bar d_R\gamma_\mu d_R
          - \bar L \gamma_\mu L 
          + \bar \ell\gamma_\mu \ell
            \qquad && U(1)_{B-L} \; ,
\end{alignat}

where $g_{Z'}$ denotes the dark gauge coupling. The different coupling structures shown above can be understood in terms of a flavor structure of a dark gauge coupling matrix.

The fermion current structure can be generalized to include the dark matter current. To couple to the gauge mediator the dark matter fermion has to be a Dirac fermion. To avoid new anomalies, the dark matter candidate cannot be chiral and its charges under the new gauge group are $q_{\chi_L}=q_{\chi_R}$. This defines a dark fermion Lagrangian with a vector mass term

\begin{align*}
\mathcal{L}_\text{DM}= i \bar \chi \not{D} \chi - m_\chi \bar \chi \chi \; ,
\end{align*}

with the covariant derivative of the SM-singlet fermion

$D_\mu=\partial_\mu -ig_{Z'} q_\chi \hat Z'_\mu$.

In all cases, the kinetic term for the $U(1)$ gauge bosons is not canonically normalized

$\mbox{Var}[\tau(X_p,X_d)]=\mbox{Var}[E(\tau(X_p,X_d)|X_p)]+E[\mbox{Var}(\tau(X_p,X_d)|X_p)]$

Attachments (3)

Download all attachments as: .zip